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The Plan for Today

✴ Recap of Multiple Regression

✴ Tying up some loose ends from last class, and a bit more on 
’controlling’.

✴ Interactions 
✴ Intuition: what’s the effect of parenthood on earnings? Well, depends. 

✴ Non-linearities 

✴ Intuition: does money buy you happiness? Well, depends. 
✴ In the meantime, visualisation, visualisation, visualisation

✴ With complex models, plots are much clearer than regression tables.
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✴ Our model of reality:

Y = α + β1X1 + β2X2 + β3X3 . . . βpXp + ϵ

✴ Where each  represents the average increase in  associated with a 
one-unit increase in  holding the other variables constant.

βj Y
Xj

✴ How do we pick the coefficients?

✴ The most common method (not the only one!) is Ordinary Least 
Squares (OLS) — choose the combination of coefficients that 
minimise the sum of squared residuals. 
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✴ What are residuals? They are the difference between…

✴ The observed values of , that is Y Y1, Y2, Y3, Y4 . . . Yn

✴ And the fitted values  (that is ) that we get at 
with out prediction line . 

̂Y ̂Y1, ̂Y2, ̂Y3, ̂Y4 . . . ̂Yn
̂Y = α̂ + ̂β1X1 + ̂β2X2 + ̂β3X3 . . . ̂βpXp

✴ Each observation  will have its own residual  i ̂ϵi = Yi − ̂Yi

✴ So OLS will choose   

so that  is minimised. 

Y = α̂ + ̂β1X1 + ̂β2X2 + ̂β3X3 . . . ̂βpXp + ̂ϵ
n

∑
i=1

̂ϵi
2 =

n

∑
i=1

(Y − ̂Yi)2



Multiple Linear Regression with OLS
Dependent variable:

Life Satisfaction (0–10)
Age 0.013*** (0.004)
Income Decile 0.163*** (0.019)
Female 0.288*** (0.100)
Religiosity (0–10) 0.022 (0.017)
Years of Education —0.003 (0.014)
Divorced —0.354 (0.299)
Single —0.118 (0.131)
Widowed —0.412** (0.189)
Constant 5.713*** (0.321)

Observations 1,601
R2 0.078
Adjusted R2 0.073
Residual Std. Error 1.947 (df = 1592)
F Statistic 16.778*** (df = 8; 1592)

Note: *p<0.1; **p<0.05; ***p<0.01
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✴ With OLS, we also estimate:
✴ The standard errors of the coefficient, which represents the 

(estimated) standard deviation of the sampling distribution of the 
coefficient, obtained through a (hypothetically) repeated sampling 
process, yielding different estimated coefficients every time.

✴ The p-value of the coefficient, which represents the probability of 
obtaining a coefficient at least as extreme as the one estimated in our 
sample, under the null hypothesis that in the population there’s no 
relationship between X and Y, conditional on covariates. 

✴ The adjusted R-squared, which quantifies the extent to which the 
model as a whole explains variation in the outcome variable. 
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✴ The model in the population (the ‘true’ model) can be written as a linear 
combination of variables and coefficients: .Y = α + β1X1 + β2X2 . . . βpXp + ϵ

2. Random Sampling

✴ We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

✴ In the sample, none of the independent variables are constant, and there are no 
exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

✴ The error term has a mean of zero and is unrelated to any of the Xs. Many potential 
violations in practice: omitted variable bias, non-linear relationships, reverse causality.

If assumptions 1–4 are satisfied, our OLS coefficient estimates are unbiased

✴ We also assume 5. Homoskedasticity and 6. Normality, rushed through last time…
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Homoskedasticity
✴ Default Standard Errors are computed assuming the 

population regression has constant variance 
(homoskedasticity) across values of the s.X

✴ We may diagnose that this is likely not the case 
(heteroskedasticity) from plotting the residuals against 
the independent variable.

✴ Biases standard errors, but not coefficients. 

✴ One popular fix: heteroskedasticity-consistent 
standard errors (more conservative). 
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✴ The error term is independent of the explanatory 

variables (zero conditional mean), has constant 
variance (homoskedasticity) and is normally 
distributed (normality). 

✴ To calculate the t-statistic and the p-value, we need to 
know the full sampling distribution of the estimate. 
This depends on (unobserved) population errors. 

✴ Useful to assume that they are normally distributed 
(as we model them as ‘random’).
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Normality of the Error Term

✴ Least worrisome of the OLS assumptions: 

✴ Only affects inferential statistics, not coefficients or S.E.

✴ With correct model specifications, your residuals will vary 
(approximately) randomly. In large samples, this will give 
you a normal distribution. But no guarantee in small samples. 

✴ Non-normal errors are usually the result of linearity 
assumption not holding. If you fix that, things are usually fine. 

✴ Visual check: histogram of residuals. 
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✴ Goal of ‘controlling’: accounting for omitted variable bias.

✴ Visually, close ’back doors’ to the causal path  X → Y

X Y

Z

Without controlling for 
, the ATE of  on  is 

positively biased
Z X Y

X Y

Z
+ + − −

X Y

Z

X Y

Z

Without controlling for 
, the ATE of  on  is 
negatively biased

Z X Y

+ +− −
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What Variables Should I Control For?

✴ Back-door criterion: Z is a ‘good control’ if 

1. Z is not a descendant of X (not post-treatment), and

2. Z blocks a path between X and Y that contains an arrow into X. 

✴ i.e. Z is a common cause of X and Y (a) or is the mediator of 
the relationship between an unobserved common cause U and 
either X or Y (respectively, b and c) . 

X Y

Z

X Y
Z

U

X Y
Z

U

(a) (b) (c)
✴ Adapted from Cinelli et al (2022)
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What Variables Should I Not Control For?
✴ If Z descends from of X (post-treatment variable): bad idea.

✴ These can: (1) block the causal path  (d), (2) are 
effects of the outcome (e), or (3) open a backdoor path to a 
previously unbiased causal path (f, g and h).

X → Y

✴ Adapted from Cinelli et al (2022)
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are good (a, b and c) or neutral (  
and j).

i

✴ But in presence of unobserved 
confounders, ‘pointless’ control 
can make existing bias worse (k).

✴ Also, they can be a problem if 
they open a backdoor path (l, 
collider bias). 

✴ Adapted from Cinelli et al (2022)
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Control for all pre-treatment variables?
✴ Usually pre-treatment variables 

are good (a, b and c) or neutral (  
and j).

i

✴ But in presence of unobserved 
confounders, ‘pointless’ control 
can make existing bias worse (k).

✴ Also, they can be a problem if 
they open a backdoor path (l, 
collider bias). 

✴ Bottom line: theory should 
inform your choice of controls, 
not data availability. 

✴ Adapted from Cinelli et al (2022)
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Example
✴ Are graduates more worried about climate change?

✴ Climate Worry = α + β Degree + ϵ

✴ What’s a possible confounder? 

✴ Ideology? Left-wingers are more likely to go to university, 
and being left-wing makes you worry about climate. 

✴ Ideology may be partly endogenous to education, but for 
now let’s make peace with that, and fit:

✴ Climate Worry = α + β1 Degree + β2 Left + ϵ
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Solution: Interaction Term
 Climate Worry = α + β1 Degree + β2 Left +β3(Degree × Left) + ϵ

✴ If Degree = 1 and Left = 0, then 
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Solution: Interaction Term
 Climate Worry = α + β1 Degree + β2 Left +β3(Degree × Left) + ϵ

Degree = 0 Degree = 1 

Left = 0

Left = 1

Dependent variable:

Climate Worry (1–5)

Intercept 2.793*** (0.05)

Degree —0.012 (0.09)

Left 0.121** (0.06)

Degree × Left 0.398*** (0.11)

✴ If Degree = 0 and Left = 0, then 

̂Y = α + β1(1) + β2(1) + β3(1 × 1) = α + β1 + β2 + β3

2.793 2.781

2.914 3.312



Solution: Interaction Term



Interaction Terms in R



Interaction Terms in R



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 

✴ This is a really good feature of lm(). Whenever you have 
interaction terms, you always want to control for the parent 
terms (education and ideology) as well as the interaction term. 



Interaction Terms in R
✴ Note,  in R you will get the same result if you run: 

✴ This is a really good feature of lm(). Whenever you have 
interaction terms, you always want to control for the parent 
terms (education and ideology) as well as the interaction term. 

✴ There is a way of telling R to include only the interaction 
term (education  ideology), but it’s best you don’t know 
because this is wrong 99% of the times.

×
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Interpreting Interaction Terms
✴ The coefficient for the interaction 

term represents the difference in 
the effect of ‘Degree’ as we move 
from Left = 0 to Left = 1. 

✴ Statistical significance (p-value) of 
the interaction tests against the 
null that the effect of the treatment 
is the same across subgroups. 

✴ Here: large and significant — we 
do have an important interaction. 

Dependent variable:

Climate Worry (1–5)

Intercept 2.793*** (0.05)

Degree —0.012 (0.09)

Left 0.121** (0.06)

Degree × Left 0.398*** (0.11)



Categorical Moderators with More Levels



Categorical Moderators with More Levels

✴ What about the Centrists? Recode Ideology as a three-
category variable. Now, the model is:



Categorical Moderators with More Levels

✴ What about the Centrists? Recode Ideology as a three-
category variable. Now, the model is:

✴   
 

Climate Worry = α + β1 Degree + β2 Left + β3 Centrist +
β4 (Degree × Left) +β5 (Degree × Centrist) + ϵ



Categorical Moderators with More Levels

✴ What about the Centrists? Recode Ideology as a three-
category variable. Now, the model is:

✴   
 

Climate Worry = α + β1 Degree + β2 Left + β3 Centrist +
β4 (Degree × Left) +β5 (Degree × Centrist) + ϵ

✴ In R, just pass the categorical variable:
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✴ What about the Centrists? Recode Ideology as a three-
category variable. Now, the model is:

✴   
 

Climate Worry = α + β1 Degree + β2 Left + β3 Centrist +
β4 (Degree × Left) +β5 (Degree × Centrist) + ϵ

✴ In R, just pass the categorical variable:



Categorical Moderators with More Levels
Dependent variable:

Climate Worry (1–5)
Intercept 2.770*** (0.061)
Degree —0.155 (0.120)
Centrist 0.075 (0.069)
Left 0.382***(0.091)
Degree × Centrist 0.468*** (0.136)
Degree × Left 0.470***(0.148)

Observations 1,699
Adjusted R2 0.052

Note: *p<0.1; **p<0.05; ***p<0.01
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Continuous Moderators
✴ What if we want to measure ideology with a 0-10 scale?

 Worry = α + β1Degree + β2R-L Scale +β3(Degree × R-L Scale) + ϵ

✴  is the estimate for the effect of ‘Degree’ on ‘Worry’ when ‘R-L 
Scale’ is zero (i.e. for the most right-wing).
β1

✴  is the predicted change in ‘Worry’ associated with of a one-
unit increase in ‘R-L Scale’ when ‘Degree’ is zero (i.e. for non-
graduates).

β2

✴  is tricky:  it’s the change in the effect of ‘Degree’ on ‘Worry’ as 
we increase the value of ‘L-R Scale’ by one unit. Easier to 
interpret significance and direction, use plots to show effect size.

β3
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Continuous Moderators

Dependent variable:

Climate Worry (1–5)

Intercept

Degree

R-L Scale

Degree × R-L Scale

 = effect of ‘Degree’ on 
‘Worry’ when ‘R-L Scale’ is zero
β1

 = effect of a one-unit increase 
in ‘R-L Scale’ on ‘Worry’ when 
‘Degree’ is zero

β2

 = change in the effect of 
‘Degree’ on ‘Worry’ as we 
increase the value of ‘L-R Scale’ 
by one unit.

β3

   +  Worry = α + β1 Degree + β2R-L Scale β3 (R-L Scale × Degree) + ϵ

2.544*** (0.075)

—0.116 (0.142)

0.068***(0.014)

0.068***(0.025)
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Visualising Continuous Moderators (1)
✴ One solution: pick some representative values of the moderator 

and show predicted values of  across treatment conditions.Y

✴ Some options:

✴ Minimum and 
Maximum value.

✴ Quartiles of the 
distribution. 

✴ Mean plus and 
minus one std. 
deviation.
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Continuous Treatment and Moderator

✴ What if we want to measure education as an interval 
variable? For instance, ‘years of education’. Same set-up:

 Worry = α + β1EduYears + β2R-L Scale
+β3(EduYears × R-L Scale) + ϵ

✴ Both linear coefficients refer to effect of a one-unit change. 

✴ The interaction term’s coefficient is the estimated change 
in the effect of one year of education on Climate Worry, 
associated with a one-point increase in the R-L scale. 
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Edu Years

R-L Scale

Edu Years × R-L Scale

 = effect of one additional Year 
of Education when ‘R-L Scale’ is 
zero

β1

 = effect of a one-point 
increase in ‘R-L Scale’ on ‘Worry’ 
when Years of Education is zero

β2

  +  Worry = α + β1EduYears + β2R-L Scale
β3(R-L Scale × EduYears) + ϵ

2.622*** (0.246)
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Continuous Moderators

Dependent variable:

Climate Worry (1–5)

Intercept

Edu Years

R-L Scale

Edu Years × R-L Scale

 = effect of one additional Year 
of Education when ‘R-L Scale’ is 
zero

β1

 = effect of a one-point 
increase in ‘R-L Scale’ on ‘Worry’ 
when Years of Education is zero

β2

 = change in the effect of one 
additional Year of Education on 
‘Worry’ as we increase the value 
of ‘L-R Scale’ by one point.

β3

  +  Worry = α + β1EduYears + β2R-L Scale
β3(R-L Scale × EduYears) + ϵ

2.622*** (0.246)

—0.008 (0.018)

—0.018(0.045)

0.008***(0.003)
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Conditional Effects Plot
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Interaction Terms: Handle with Care
✴ Always include both the ‘parent’ terms in a model with 

an interaction. lm()forces you to do that, thankfully.

✴ It follows that moderators appear in your formula as 
covariates: therefore, for causal interpretation, you 
should use variables that are plausibly pre-treatment.

✴ Software and math do not distinguish between 
treatment and moderator: the models we’ve just seen 
could be just as good to get at the effect of ideology on 
climate worry, conditional on education.

✴ It’s up to you to interpret things correctly. 
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Interaction Terms: Handle with Care
✴ You should have a strong theoretical reason to use an 

interaction term. Don’t be this person:

• “I spent a year collecting all these data and I got a null 
result. Maybe the treatment works differently for men and 
women. Let’s try adding an interaction for gender.”

• “Nothing. Maybe it’s race? Nope. Hair colour? Nada. 
Maybe it’s a triple interaction — treatment  race  
gender? Maybe the treatment only works for people born 
in odd years.” 

× ×

✴ Potentially infinite combinations of interaction terms. You 
will get ‘lucky’ and find something significant at some point. 
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Interaction Terms: Handle with Care
✴ Temptation for ‘fishing’ with interactions is particularly 

strong also because interactions tend to be noisy. 

✴ Our main effects are already noisy, because they’re 
estimated with uncertainty. 

✴ Interactions estimate a difference between two noisy 
things. So they’re even noisier. Surprisingly big effects 
could pop up because of a few outliers. 

✴ You need very large sample sizes to estimate an interaction 
effect precisely (16  larger than for a main effect).×
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Interaction Terms: Handle with Care
✴ More on pitfalls of interactions: 

✴ Brambor, T., Clark, W., and Golder, M. (2006) “Understanding 
interaction models: Improving empirical analyses.” Political 
Analysis 14(1), 63-82.

✴ Hainmueller, J., Mummolo, J., & Xu, Y. (2019). “How much should 
we trust estimates from multiplicative interaction models? Simple 
tools to improve empirical practice.” Political Analysis, 27(2), 
163-192.

✴ Gelman, A. (2023) “You need 16 times the sample size to estimate 
an interaction than to estimate a main effect, explained”, blogpost 
in Statistical Modeling, Causal Inference, and Social Science. 
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Dealing with Non-Linearities
✴ Polynomial terms (main focus today). Introducing as 

regressors a variable and powers of the same variable (usually: 
squared, but you can add cubed, fourth power etc.).

✴ Y = α + β1X + β2X2 + β3X3 + ϵ

✴ Variable transformations (if there’s time). Commonly, taking 
the natural logarithm of the variables to reduce their skew.

✴  Y = α + β log(X) + ϵ

✴ Both approaches are consistent with linearity assumptions: 
regression are still ‘linear in the s’.β
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Second-Degree Polynomial
✴ You might remember from high-school calculus the 

formula for a parabola: y = ax2 + bx + c

✴ A regression curve with the second-order polynomial of 
 has the same functional form: . X ̂Y = α̂ + ̂β1X + ̂β2X2

✴ Characteristics of a parabolic curve:

✴ It is U-shaped (‘opening up’) if . It is n-shaped 
(‘opening down’) if . 

β2 > 0
β2 < 0

✴
It has one bend, known as its vertex, given by −

β1

2β2
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Example
✴ Does democracy increase or decrease trust in government?

Democracy Govt. Trust

Freedom of Dissent, 
Polarisation

−

Accountability,
Responsiveness

++

+

✴ We gather data on Democracy (0-10 scale) from V-Dem, and 
on the average country-level Trust in Government (1 = none 
at all, 4 = a great deal) from the World Values Survey (WVS).
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✴ Sign of : if , U-shaped 

curve, if , n-shaped 
curve.

β2 β2 > 0
β2 < 0

✴ Significance of : tests 
against the null that the 
relationship is linear.

β2

✴ Vertex: . This is 
where sign of the relationship 
changes — may fall outside 
the observed range of .

−β1/(2β2)

X
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Second-Degree Polynomial: Coefficients
✴ Usual interpretation of effect size 

doesn’t work: “holding all else 
constant, a one-unit increase in  is 
associated with a  increase in .”

X
β1 Y

✴ We can’t hold all else constant. If 
we increase , we also increase . X X2

✴ At each value  the predicted rate 
of change in  varies.

X
Y

✴ Polynomial variable coefficients  
and  mean little on their own, 
they must be interpreted together

β1
β2

Dependent variable:
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by the derivative. The derivative of 
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Second-Degree Polynomial: Coefficients
✴ Instantaneous rate of change, expressed 

by the derivative. The derivative of 
 in  is .̂Y = α + β1X + β2X2 X β1 + 2β2X

✴ In our model, 
−0.508 + 0.092 ×  Democracy

✴ Rate of change if Democracy = 1:

✴ −0.508 + 0.092 × 1 = − 0.416

✴ Rate of change in Democracy = 5:

✴ −0.508 + 0.092 × 5 = − 0.048

✴ Rate of change in Democracy = 8:

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)
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Second-Degree Polynomial: Coefficients
✴ Instantaneous rate of change, expressed 

by the derivative. The derivative of 
 in  is .̂Y = α + β1X + β2X2 X β1 + 2β2X

✴ In our model, 
−0.508 + 0.092 ×  Democracy

✴ Rate of change if Democracy = 1:

✴ −0.508 + 0.092 × 1 = − 0.416

✴ Rate of change in Democracy = 5:

✴ −0.508 + 0.092 × 5 = − 0.048

✴ Rate of change in Democracy = 8:

✴ , etc.−0.508 + 0.092 × 8 = + 0.228

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy2 0.046*** (0.008)
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Visualisation: Conditional Effect Plot



Check if you understand

✴ Guo, G. (2009). China's local political budget cycles. American Journal of Political Science, 53(3), 621-632.

✴ How does a leader’s time in office affect spending in Chinese counties?
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Higher-Order Polynomials
✴ You can add higher-order terms ( , etc.) to model 

more complex non-linearities. In general, a polynomial 
of order  corresponds to a curve with  bends.

X3, X4

n n − 1

✴ You always want to include lower-order terms. E.g., if 
you want to have , you should also have  and .X3 X2 X

✴ If a quadratic term doesn’t improve the model, it’s 
unlikely a cubic term will do, and so on. In practice, it 
(almost) never makes sense to go beyond a cubic.

✴ Interpretation gets trickier. Use visualisation tools to get 
a sense of what you’re fitting. 
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Log-Transformations
✴ Useful when dealing with variables that are positive and 

right-skewed: 

✴ Income: lots of people around the median income, and a 
handful of mega-rich.

✴ Population: 50% of countries below 10m people ( ). 
Then there’s China and India, with 1bn people ( ). 

107

109

✴ GDP per capita: 80% of countries below $50k. Then, 
there’s Luxembourg, Singapore and Qatar (> $125k). 

✴ Linear relationships are unlikely with these variables as your 
predictors, outcomes or both. 
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Log-Transformations
✴ We can unskew these variables by taking their natural logarithm 

(notated as log, or ln). Reminder:

✴ If , then , where . log(a) = b eb = a e ≈ 2.71828

✴ How it works in practice:

✴ log(1) = 0

✴ log(10) ≈ 2.30

✴ log(100) ≈ 4.60

✴ log(1000) ≈ 6.91

✴ log(106) ≈ 13.82

✴ (Careful: you can’t take logs of zero or negative numbers!)
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Log-Transformations: Example

✴ Famous paper: Acemoglu, D., Johnson, S., & Robinson, J. 
A. (2001). The colonial origins of comparative 
development: An empirical investigation. American 
Economic Review, 91(5), 1369-1401.

✴ Argument: Colonial powers set up extractive institutions 
in places where they faced high mortality rates (due to e.g. 
diseases). Where they can settle easily, they set up growth-
inducing institutions, like property rights. Long-run 
growth is thus related to initial conditions faced by settlers:

✴ GDP in 1995 = α + βSettler Mortality + ϵ
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Log-Transformations: Example
GDP in 1995 = α + β log(Settler Mortality) + ϵ



Log-Transformations: Example
log(GDP in 1995) = α + β log(Settler Mortality) + ϵ



Log Coefficients: Interpretation



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β

✴ Level-Log model Y = α + β log(X) + ϵ



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β

✴ Level-Log model Y = α + β log(X) + ϵ

✴ 1% change in    predicted to change by X → Y (β/100)



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β

✴ Level-Log model Y = α + β log(X) + ϵ

✴ 1% change in    predicted to change by X → Y (β/100)

✴ Log-Level model log(Y ) = α + βX + ϵ



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β

✴ Level-Log model Y = α + β log(X) + ϵ

✴ 1% change in    predicted to change by X → Y (β/100)

✴ Log-Level model log(Y ) = α + βX + ϵ

✴ One-unit change in    predicted to change by %X → Y β × 100



Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β
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Log Coefficients: Interpretation
✴ Interesting property of logarithms: can interpret the coefficients in terms 

of percentage change (an approximation, valid only for small increases). 

✴ Level-Level model Y = α + βX + ϵ

✴ One-unit change in    predicted to change by X → Y β

✴ Level-Log model Y = α + β log(X) + ϵ

✴ 1% change in    predicted to change by X → Y (β/100)

✴ Log-Level model log(Y ) = α + βX + ϵ

✴ One-unit change in    predicted to change by %X → Y β × 100

✴ Log-Log model log(Y ) = α + β log(X) + ϵ

✴ 1% change in    changes by %X → Y β
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Wrap-Up: Non-Linearities
✴ Polynomial terms are a very flexible tool:

✴ Unlike logs, they can handle changes in effect direction 
over the range of the predictor, and negative values. 

✴ Including higher-order terms comes with the risk of 
overfitting. Theory should inform model specification.

✴ Log-transformation are used more narrowly:

✴ Non-linearities produced by skewed, positive variables.

✴ Assume proportional relationships: halving  has 
approximately the same effect size on  as doubling .
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