Interactions

Introduction to Statistics

HIGHLY NON-LINEAR WORLD

* Recap of Multiple Regression

* Recap of Multiple Regression

* Tying up some loose ends from last class, and a bit more on 'controlling'.

* Recap of Multiple Regression

- * Tying up some loose ends from last class, and a bit more on 'controlling'.
- * Interactions

* Recap of Multiple Regression

* Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

Women's earnings drop significantly after having a child. Men's don't.

Source: "Children and gender inequality: Evidence from Denmark," National Bureau of Economic Research

* Recap of Multiple Regression

* Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

* Recap of Multiple Regression

* Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

* Non-linearities

* Recap of Multiple Regression

* Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

* Non-linearities

* Intuition: does money buy you happiness? Well, *depends*.

Average subjective happiness by equivalised household income percentile (after housing costs): UK, 2014-16

Notes: Each dot represents the average level of well-being for a percentile of household income (measured after housing costs), ranging from percentile 1 on the far left of the chart to percentile 100 on the far right. The lines are logarithmic lines of best fit. Source: RF analysis of DWP, Family Resources Survey; pooled data for 2014-15 to 2016-17

© Resolution Foundation 2019

resolutionfoundation.org

RF

* Recap of Multiple Regression

* Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

* Non-linearities

* Intuition: does money buy you happiness? Well, *depends*.

* Recap of Multiple Regression

 * Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

* Non-linearities

- * Intuition: does money buy you happiness? Well, *depends*.
- * In the meantime, **visualisation**, **visualisation**, **visualisation**

* Recap of Multiple Regression

 * Tying up some loose ends from last class, and a bit more on 'controlling'.

* Interactions

* Intuition: what's the effect of parenthood on earnings? Well, *depends*.

* Non-linearities

- * Intuition: does money buy you happiness? Well, *depends*.
- * In the meantime, **visualisation**, **visualisation**, **visualisation**
 - * With complex models, plots are much clearer than regression tables.

Regression: Recap

* Our model of reality:

* Our model of reality:

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$

* Our model of reality:

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$

* Our model of reality:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$$

* Where each β_j represents the average increase in *Y* associated with a one-unit increase in X_j holding the other variables constant.

* Our model of reality:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$$

- * Where each β_j represents the average increase in *Y* associated with a one-unit increase in X_j holding the other variables constant.
- * How do we pick the coefficients?

* Our model of reality:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots \beta_p X_p + \epsilon$$

- * Where each β_j represents the average increase in *Y* associated with a one-unit increase in X_j holding the other variables constant.
- * How do we pick the coefficients?
- * The most common method (not the only one!) is Ordinary Least
 Squares (OLS) choose the combination of coefficients that
 minimise the sum of squared residuals.

* What are residuals? They are the difference between...

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$
 - * And the **fitted values** \hat{Y} (that is $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \hat{Y}_4 \dots \hat{Y}_n$) that we get at with out prediction line $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p$.

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$
 - * And the **fitted values** \hat{Y} (that is $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \hat{Y}_4 \dots \hat{Y}_n$) that we get at with out prediction line $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p$.
- * Each observation *i* will have its own residual $\hat{\epsilon}_i = Y_i \hat{Y}_i$

- * What are residuals? They are the difference between...
 - * The **observed values** of *Y*, that is $Y_1, Y_2, Y_3, Y_4 \dots Y_n$
 - * And the **fitted values** \hat{Y} (that is $\hat{Y}_1, \hat{Y}_2, \hat{Y}_3, \hat{Y}_4 \dots \hat{Y}_n$) that we get at with out prediction line $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p$.
- * Each observation *i* will have its own residual $\hat{\epsilon}_i = Y_i \hat{Y}_i$

* So OLS will choose $Y = \hat{\alpha} + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \hat{\beta}_3 X_3 \dots \hat{\beta}_p X_p + \hat{\epsilon}$ so that $\sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (Y - \hat{Y}_i)^2$ is minimised.

	Dependent variable:
	Life Satisfaction (0–10)
Age	0.013*** (0.004)
Income Decile	0.163*** (0.019)
Female	0.288*** (0.100)
Religiosity (0–10)	0.022 (0.017)
Years of Education	-0.003 (0.014)
Divorced	-0.354 (0.299)
Single	-0.118 (0.131)
Widowed	-0.412** (0.189)
Constant	5.713*** (0.321)
Observations	1,601
R ²	0.078
Adjusted R ²	0.073
Residual Std. Error	1.947 (df = 1592)
F Statistic	16.778^{***} (df = 8; 1592)

*p<0.1; **p<0.05; ***p<0.01

* With OLS, we also estimate:

- * With OLS, we also estimate:
- * The **standard errors of the coefficient**, which represents the (estimated) standard deviation of the sampling distribution of the coefficient, obtained through a (hypothetically) repeated sampling process, yielding different estimated coefficients every time.

- * With OLS, we also estimate:
- * The **standard errors of the coefficient**, which represents the (estimated) standard deviation of the sampling distribution of the coefficient, obtained through a (hypothetically) repeated sampling process, yielding different estimated coefficients every time.
- * The *p*-value of the coefficient, which represents the probability of obtaining a coefficient at least as extreme as the one estimated in our sample, under the null hypothesis that in the population there's no relationship between X and Y, conditional on covariates.

- * With OLS, we also estimate:
- * The **standard errors of the coefficient**, which represents the (estimated) standard deviation of the sampling distribution of the coefficient, obtained through a (hypothetically) repeated sampling process, yielding different estimated coefficients every time.
- * The *p*-value of the coefficient, which represents the probability of obtaining a coefficient at least as extreme as the one estimated in our sample, under the null hypothesis that in the population there's no relationship between X and Y, conditional on covariates.
- * The **adjusted R-squared**, which quantifies the extent to which the model as a whole explains variation in the outcome variable.

```
Call:
lm(formula = life_satisf ~ age + income_decile + female + religiosity +
    years_education + marital_status, data = ess)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-8.1662 -0.8452 0.2721 1.2738 3.8794
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                        5.712586 0.320715 17.812 < 2e-16 ***
(Intercept)
                        0.013353 0.003510 3.804 0.000148 ***
age
income_decile
                        0.163156
                                 0.019339 8.437 < 2e-16 ***
female
                                  0.099643 2.889 0.003914 **
                        0.287897
religiosity
                        0.022203
                                  0.016572 1.340 0.180513
                                  0.014112 -0.226 0.821429
years_education
                       -0.003186
marital_status divorced -0.353683
                                  0.299287 -1.182 0.237480
                                  0.130715 -0.903 0.366491
marital_status single
                       -0.118078
                                  0.188733 -2.184 0.029090 *
marital_status widowed -0.412239
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.947 on 1592 degrees of freedom (603 observations deleted due to missingness) Multiple R-squared: 0.07776, Adjusted R-squared: 0.07312 F-statistic: 16.78 on 8 and 1592 DF, p-value: < 2.2e-16</pre>

OLS Assumptions
1. Linearity

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)
 - * The error term has a **mean of zero** and is **unrelated to any of the** *Xs*. *Many potential violations in practice:* omitted variable bias, non-linear relationships, reverse causality.

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)
 - * The error term has a **mean of zero** and is **unrelated to any of the** *Xs*. *Many potential violations in practice:* omitted variable bias, non-linear relationships, reverse causality.

If assumptions 1–4 are satisfied, our OLS coefficient estimates are unbiased

- 1. Linearity
 - * The model **in the population** (the 'true' model) can be written as a linear combination of variables and coefficients: $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 \dots \beta_p X_p + \epsilon$.
- 2. Random Sampling
 - * We have a **random sample** of *n* observations, following the population model.
- 3. No Perfect Collinearity
 - * In the sample, none of the independent variables are **constant**, and there are no **exact linear relationships** between independent variables.
- 4. Zero Conditional Mean (Exogeneity)
 - * The error term has a **mean of zero** and is **unrelated to any of the** *Xs*. *Many potential violations in practice*: omitted variable bias, non-linear relationships, reverse causality.

If assumptions 1–4 are satisfied, our OLS coefficient estimates are unbiased

* We also assume 5. Homoskedasticity and 6. Normality, rushed through last time...

 Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the Xs.

- Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the Xs.
- * We may diagnose that this is likely not the case
 (heteroskedasticity) from plotting the residuals against the independent variable.

- Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the *X*s.
- * We may diagnose that this is likely not the case
 (heteroskedasticity) from plotting the residuals against the independent variable.
- * Biases standard errors, but not coefficients.

- Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the *X*s.
- * We may diagnose that this is likely not the case
 (heteroskedasticity) from plotting the residuals against the independent variable.
- * Biases standard errors, but not coefficients.
- * One popular fix: heteroskedasticity-consistent standard errors (more conservative).

Violation of Homoskedasticity Assumption

Violation of Homoskedasticity Assumption

 The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).

- * The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
- * To calculate the *t*-statistic and the *p*-value, we need to know the full sampling distribution of the estimate. This depends on (unobserved) population errors.

- * The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
- * To calculate the *t*-statistic and the *p*-value, we need to know the full sampling distribution of the estimate. This depends on (unobserved) population errors.
- * Useful to assume that they are normally distributed (as we model them as 'random').

* Least worrisome of the OLS assumptions:

- * Least worrisome of the OLS assumptions:
 - * Only affects inferential statistics, not coefficients or S.E.

- * Least worrisome of the OLS assumptions:
 - * Only affects inferential statistics, not coefficients or S.E.
 - With correct model specifications, your residuals will vary (approximately) randomly. In large samples, this will give you a normal distribution. But no guarantee in small samples.

- * Least worrisome of the OLS assumptions:
 - * Only affects inferential statistics, not coefficients or S.E.
 - With correct model specifications, your residuals will vary (approximately) randomly. In large samples, this will give you a normal distribution. But no guarantee in small samples.
 - * Non-normal errors are usually the result of linearity assumption not holding. If you fix that, things are usually fine.

- * Least worrisome of the OLS assumptions:
 - * Only affects inferential statistics, not coefficients or S.E.
 - With correct model specifications, your residuals will vary (approximately) randomly. In large samples, this will give you a normal distribution. But no guarantee in small samples.
 - * Non-normal errors are usually the result of linearity assumption not holding. If you fix that, things are usually fine.
 - * Visual check: histogram of residuals.

* Goal of 'controlling': accounting for omitted variable bias.

- * Goal of 'controlling': *accounting for omitted variable bias*.
- * Visually, close 'back doors' to the causal path $X \rightarrow Y$

- * Goal of 'controlling': *accounting for omitted variable bias*.
- * Visually, close 'back doors' to the causal path $X \rightarrow Y$

Without controlling for *Z*, the ATE of *X* on *Y* is positively biased

- * Goal of 'controlling': *accounting for omitted variable bias*.
- * Visually, close 'back doors' to the causal path $X \rightarrow Y$

Without controlling for *Z*, the ATE of *X* on *Y* is positively biased

Without controlling for *Z*, the ATE of *X* on *Y* is negatively biased

* Adapted from Cinelli et al (2022)

- * Adapted from Cinelli et al (2022)
 - * **Back-door criterion**: Z is a 'good control' if

- * Adapted from Cinelli et al (2022)
 - * **Back-door criterion**: Z is a 'good control' if
 - 1. Z is not a descendant of X (not **post-treatment**), and

- * Adapted from Cinelli et al (2022)
 - * **Back-door criterion**: Z is a 'good control' if
 - 1. Z is not a descendant of X (not **post-treatment**), and
 - 2. Z blocks a path between X and Y **that contains an arrow into X**.

- * Adapted from Cinelli et al (2022)
 - * **Back-door criterion**: Z is a 'good control' if
 - 1. Z is not a descendant of X (not **post-treatment**), and
 - 2. Z blocks a path between X and Y **that contains an arrow into X**.
 - * i.e. Z is a common cause of X and Y (*a*) or is the mediator of the relationship between an unobserved common cause U and either X or Y (respectively, *b* and *c*).

* If Z descends from of X (post-treatment variable): **bad idea**.

* If Z descends from of X (post-treatment variable): **bad idea**.

* Adapted from Cinelli et al (2022)

- * If Z descends from of X (post-treatment variable): **bad idea**.
- * These can: (1) **block the causal path** $X \rightarrow Y(d)$, (2) are **effects** of the outcome (*e*), or (3) **open a backdoor path** to a previously unbiased causal path (*f*, *g* and *h*).

* Adapted from Cinelli et al (2022)

* Usually pre-treatment variables
are good (*a*, *b* and *c*) or neutral (*i* and *j*).

- * Usually pre-treatment variables are good (*a*, *b* and *c*) or **neutral** (*i* and *j*).
- But in presence of unobserved
 confounders, 'pointless' control
 can make existing bias worse (k).

- * Usually pre-treatment variables are good (*a*, *b* and *c*) or **neutral** (*i* and *j*).
- But in presence of unobserved
 confounders, 'pointless' control
 can make existing bias worse (k).
- * Also, they can be a problem if they open a backdoor path (*l*, collider bias).

Adapted from Cinelli et al (2022)

- * Usually pre-treatment variables are good (*a*, *b* and *c*) or **neutral** (*i* and *j*).
- But in presence of unobserved
 confounders, 'pointless' control
 can make existing bias worse (k).
- * Also, they can be a problem if they open a backdoor path (*l*, collider bias).
- Bottom line: theory should inform your choice of controls, not data availability.

Adapted from Cinelli et al (2022)

Interactions

* Are graduates more worried about climate change?

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?
 - * **Ideology**? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?
 - * **Ideology**? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.
 - * Ideology may be partly endogenous to education, but for now let's make peace with that, and fit:

- * Are graduates more worried about climate change?
 - * Climate Worry = $\alpha + \beta$ Degree + ϵ
- * What's a possible confounder?
 - * **Ideology**? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.
 - * Ideology may be partly endogenous to education, but for now let's make peace with that, and fit:
 - * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + ϵ

Example: Regression Table

	Dependent variable:
	wrclmch
educationdegree	0.275***
	(0.049)
ideologyleft	0.235***
	(0.049)
Constant	2.712***
	(0.044)
Observations	1 699
R2	0.031
Adjusted R2	0.030
Residual Std. Error	0.923 (df = 1696)
F Statistic	27.511*** (df = 2; 1696)
Note:	*p<0.1; **p<0.05; ***p<0.01

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0		
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	I oft – 1		
Degree × Left	0.398*** (0.11)	Let $I = I$		

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

* If Degree = 0 and Left = 0, then

 $\hat{Y} = \alpha + \beta_1(0) + \beta_2(0) + \beta_3(0 \times 0) = \alpha$

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

* If Degree = 1 and Left = 0, then

 $\hat{Y} = \alpha + \beta_1(1) + \beta_2(0) + \beta_3(1 \times 0) = \alpha + \beta_1$

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1		
Degree × Left	0.398*** (0.11)			

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1	2.914	
Degree × Left	0.398*** (0.11)			

* If Degree = 0 and Left = 1, then

 $\hat{Y} = \alpha + \beta_1(0) + \beta_2(1) + \beta_3(0 \times 1) = \alpha + \beta_2$

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1	2.914	
Degree × Left	0.398*** (0.11)			
Solution: Interaction Term

Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 (Degree × Left) + ϵ

Dependent variable:

	Climate Worry (1–5)		Degree = 0	Degree = 1
Intercept	2.793*** (0.05)	Left = 0	2.793	2.781
Degree	-0.012 (0.09)			
Left	0.121** (0.06)	Left = 1	2.914	3.312
Degree × Left	0.398*** (0.11)			

* If Degree = 0 and Left = 0, then

 $\hat{Y} = \alpha + \beta_1(1) + \beta_2(1) + \beta_3(1 \times 1) = \alpha + \beta_1 + \beta_2 + \beta_3$

Solution: Interaction Term

Predicted Worry about Climate Change (1-5 scale)

Call: lm(formula = wrclmch ~ education + ideol data = ess)	.ogy + <mark>education *</mark>	ideology,
Residuals: Min 1Q Median 3Q -2.30028 -0.79261 0.08619 0.21898 2.2	Max 21898	
Coefficients:		
Estimate St	d. Error t value	Pr(>ltl)
(Intercept) 2.79261	0.04900 56.997	< 2e-16 ***
educationdegree -0.01159	0.09257 -0.125	0.90036
ideologyleft 0.12120	0.05829 2.079	0.03776 *
educationdegree:ideologyleft 0.39805	0.10906 3.650	0.00027 ***
Signif. codes: 0 '***' 0.001 '**' 0.01	·*' 0.05 ·.' 0.1	''1

Residual standard error: 0.9192 on 1695 degrees of freedom (260 observations deleted due to missingness) Multiple R-squared: 0.03898, Adjusted R-squared: 0.03727 F-statistic: 22.91 on 3 and 1695 DF, p-value: 1.533e-14

* Note, in R you will get the same result if you run:

* Note, in R you will get the same result if you run:

lm(wrclmch ~ education + ideology + education*ideology, data = ess)

lm(wrclmch ~ education*ideology, data = ess)

* Note, in R you will get the same result if you run:

lm(wrclmch ~ education + ideology + education*ideology, data = ess)

lm(wrclmch ~ education*ideology, data = ess)

* This is a really good feature of lm(). Whenever you have interaction terms, you always want to control for the parent terms (*education* and *ideology*) as well as the interaction term.

* Note, in R you will get the same result if you run:

lm(wrclmch ~ education + ideology + education*ideology, data = ess)

lm(wrclmch ~ education*ideology, data = ess)

- * This is a really good feature of lm(). Whenever you have interaction terms, you always want to control for the parent terms (*education* and *ideology*) as well as the interaction term.
- * There is a way of telling R to include only the interaction term (*education* × *ideology*), but it's best you don't know because this is **wrong** 99% of the times.

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

* We call 'Left' the moderator,
because it moderates the effect of
our treatment (Degree).

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- * We call 'Left' the moderator,
 because it moderates the effect of
 our treatment (Degree).
- * The coefficient for the treatment
 (Degree) is the effect of the variable
 when the moderator (Left) is zero.

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- We call 'Left' the moderator,
 because it moderates the effect of
 our treatment (Degree).
- The coefficient for the treatment
 (Degree) is the effect of the variable
 when the moderator (Left) is zero.
- The coefficient for the moderator
 (Left) is the effect of the variable
 when the treatment (Degree) is zero.

 Climate Worry (1–5)

 Intercept
 2.793*** (0.05)

 Degree
 -0.012 (0.09)

 Left
 0.121** (0.06)

 Degree × Left
 0.398*** (0.11)

	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left = 0 to Left = 1.

	Dependent variable:
	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left = 0 to Left = 1.
- Statistical significance (*p*-value) of the interaction tests against the null that the effect of the treatment is the same across subgroups.

	Dependent variable:
	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

- The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left = 0 to Left = 1.
- Statistical significance (*p*-value) of the interaction tests against the null that the effect of the treatment is the same across subgroups.
- Here: large and significant we do have an important interaction.

	Dependent variable:
	Climate Worry (1–5)
Intercept	2.793*** (0.05)
Degree	-0.012 (0.09)
Left	0.121** (0.06)
Degree × Left	0.398*** (0.11)

* What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:

- * What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:
- * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 Centrist + β_4 (Degree × Left) + β_5 (Degree × Centrist) + ϵ

- * What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:
- * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 Centrist + β_4 (Degree × Left) + β_5 (Degree × Centrist) + ϵ
- * In R, just pass the categorical variable:

- * What about the Centrists? Recode Ideology as a **threecategory** variable. Now, the model is:
- * Climate Worry = $\alpha + \beta_1$ Degree + β_2 Left + β_3 Centrist + β_4 (Degree × Left) + β_5 (Degree × Centrist) + ϵ
- * In R, just pass the categorical variable:

```
lm(wrclmch \sim education + ideo_group + education*ideo_group, data = ess)
```

```
# or equivalently
```

lm(wrclmch ~ education*ideo_group, data = ess)

* What if we want to measure ideology with a 0-10 scale?

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

* β_1 is the estimate for the effect of 'Degree' on 'Worry' when 'R-L **Scale' is zero** (i.e. for the most right-wing).

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

- * β₁ is the estimate for the effect of 'Degree' on 'Worry' when 'R-L
 Scale' is zero (i.e. for the most right-wing).
- * β_2 is the predicted change in 'Worry' associated with of a **one-unit increase** in 'R-L Scale' when 'Degree' is zero (i.e. for non-graduates).

* What if we want to measure ideology with a 0-10 scale?

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (Degree × R-L Scale) + ϵ

- * β₁ is the estimate for the effect of 'Degree' on 'Worry' when 'R-L
 Scale' is zero (i.e. for the most right-wing).
- * β_2 is the predicted change in 'Worry' associated with of a **one-unit increase** in 'R-L Scale' when 'Degree' is zero (i.e. for non-graduates).
- * β_3 is tricky: it's the change in the effect of 'Degree' on 'Worry' as **we increase the value of 'L-R Scale' by one unit**. Easier to interpret significance and direction, use plots to show effect size.

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Dependent variable:

Climate Worry (1–5)

R-L Scale

Intercept

Degree

Degree \times R-L Scale

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

	Climate Worry (1–5)
ntercept	2.544*** (0.075)
Degree	
R-L Scale	
Degree × R-L Scale	

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Worry = $\alpha + \beta_1$ Degree + β_2 R-L Scale + β_3 (R-L Scale × Degree) + ϵ

Visualising Continuous Moderators (1)
* One solution: pick **some representative values of the moderator** and show predicted values of *Y* across treatment conditions.

- * One solution: pick **some representative values of the moderator** and show predicted values of *Y* across treatment conditions.
- * Some options:

- * One solution: pick **some representative values of the moderator** and show predicted values of *Y* across treatment conditions.
- * Some options:
 - * Minimum andMaximum value.

Predicted Worry about Climate Change (1-5 scale)

- * One solution: pick **some representative values of the moderator** and show predicted values of *Y* across treatment conditions.
- * Some options:
 - * Minimum and Maximum value.

Quartiles of the

distribution.

Predicted Worry about Climate Change (1-5 scale)

- * One solution: pick **some representative values of the moderator** and show predicted values of *Y* across treatment conditions.
- * Some options:
 - * Minimum and Maximum value.
 - * Quartiles of the distribution.
 - * Mean *plus* and *minus* one std.
 deviation.

* A second solution: plot the effect of the treatment (Y-axis) by the value of the moderator (X-axis). This is known as a *conditional effect plot*.

* A second solution: plot the effect of the treatment (Y-axis) by the value of the moderator (X-axis). This is known as a *conditional effect plot*.

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (EduYears × R-L Scale) + ϵ

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (EduYears × R-L Scale) + ϵ

* Both linear coefficients refer to effect of a one-unit change.

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (EduYears × R-L Scale) + ϵ

- * Both linear coefficients refer to effect of a one-unit change.
- * The interaction term's coefficient is the estimated **change in the effect of one year of education** on Climate Worry, associated with a **one-point increase in the R-L scale**.

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Climate Worry (1–5)

Intercept

Edu Years

R-L Scale

Edu Years × R-L Scale

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Climate Worry (1–5)

Intercept

2.622*** (0.246)

Edu Years

R-L Scale

Edu Years × R-L Scale

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Worry = $\alpha + \beta_1$ EduYears + β_2 R-L Scale + β_3 (R-L Scale × EduYears) + ϵ

Dependent variable:

Predicted Values Plot

Conditional Effects Plot

Effect of One Additional Year of Education On Climate Worry, Conditional On Right-Left Ideology

* Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.

- * Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.
- * It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should **use variables that are plausibly pre-treatment**.

- * Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.
- It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.
- Software and math do not distinguish between treatment and moderator: the models we've just seen could be just as good to get at the effect of ideology on climate worry, conditional on education.

- * Always include both the 'parent' terms in a model with an interaction. lm() forces you to do that, thankfully.
- It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.
- Software and math do not distinguish between treatment and moderator: the models we've just seen could be just as good to get at the effect of ideology on climate worry, conditional on education.
- * It's up to you to **interpret things correctly**.

* You should have a strong theoretical reason to use an interaction term. **Don't be this person**:

- * You should have a strong theoretical reason to use an interaction term. **Don't be this person**:
 - "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."

- * You should have a strong theoretical reason to use an interaction term. **Don't be this person**:
 - "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."
 - "Nothing. Maybe it's race? Nope. Hair colour? Nada. Maybe it's a triple interaction — treatment × race × gender? Maybe the treatment only works for people born in odd years."

- * You should have a strong theoretical reason to use an interaction term. **Don't be this person**:
 - "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."
 - "Nothing. Maybe it's race? Nope. Hair colour? Nada. Maybe it's a triple interaction — treatment × race × gender? Maybe the treatment only works for people born in odd years."
- * Potentially **infinite** combinations of interaction terms. You will get 'lucky' and find something significant at some point.

* Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.

- * Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.
- * Our main effects are already noisy, because they're estimated with uncertainty.

- * Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.
- * Our main effects are already noisy, because they're estimated with uncertainty.
- Interactions estimate a difference between two noisy things. So they're even noisier. Surprisingly big effects could pop up because of a few outliers.
- * Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be **noisy**.
- * Our main effects are already noisy, because they're estimated with uncertainty.
- Interactions estimate a difference between two noisy things. So they're even noisier. Surprisingly big effects could pop up because of a few outliers.
- * You need very large sample sizes to estimate an interaction effect precisely (16× larger than for a main effect).

* More on pitfalls of interactions:

- * More on pitfalls of interactions:
- * Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." *Political Analysis* 14(1), 63-82.

- * More on pitfalls of interactions:
- * Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." *Political Analysis* 14(1), 63-82.
- * Hainmueller, J., Mummolo, J., & Xu, Y. (2019). "How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice." *Political Analysis*, 27(2), 163-192.

- * More on pitfalls of interactions:
- * Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." *Political Analysis* 14(1), 63-82.
- * Hainmueller, J., Mummolo, J., & Xu, Y. (2019). "How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice." *Political Analysis*, 27(2), 163-192.
- * Gelman, A. (2023) "You need 16 times the sample size to estimate an interaction than to estimate a main effect, explained", blogpost in *Statistical Modeling*, *Causal Inference*, and Social Science.

Check if you understand (1)

* Does 'winning' (i.e. voting for the party that forms the government) make people feel happier?

Random Intercept, Interaction

.101*** (.021)
079*** (.029)
014** (.007)
034** (.018)
.018*** (.003)
3.166*** (.522)
.018*** (.006)
.435*** (.005)
26,133.8
12,996
16

Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.

Check if you understand (1)

Does 'winning' (i.e. voting for the party that forms the government) make people feel happier? Marginal Effect of *Winner* on Subjective Well-Being at Different Levels of Corruption, European Sample

* Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.

Check if you understand (2)

* Does telling people their party is going to lose the next election (*threat* treatment vs *reassurance* control) make them angrier?

Anger and Party Threat 2 1 Partisan strength -.01 (.03) .01 (.03) Partisan identity -.07 (.07) .26 (.06)*** Party threat/reassurance .03 (.08) .10 (.04)** Partisan strength \times threat/reassurance -.01(.04)Partisan identity × threat/reassurance .44 (.09)*** Ideological issue intensity .06 (.05) .07 (.05) – .03 (.07) Ideological intensity × threat/reassurance -.03 (.07) Knowledge – .19 (.10)* -.19 (.09)** Gender (male) - .04 (.02)** -.03 (.02)* Education – .05 (.04) -.04 (.04) Age (decades) .01 (.01) .00 (.01) Constant .42 (.11)*** .46 (.11)*** Adj. R² 0.22 0.24 Ν 1482 1482

Huddy, L., Mason, L., & Aarøe, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. APSR, 109(1), 1-17.

Check if you understand (2)

Does telling * people their party is going to lose the next election (threat treatment vs reassurance control) make them angrier?

Huddy, L., Mason, L., & Aarøe, L. (2015). Expressive partisanship: Campaign involvement, political emotion, and partisan identity. APSR, 109(1), 1-17.

Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

* Variable transformations (if there's time). Commonly, taking the natural logarithm of the variables to reduce their skew.

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

* Variable transformations (if there's time). Commonly, taking the natural logarithm of the variables to reduce their skew.

* $Y = \alpha + \beta \log(X) + \epsilon$

 * Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

*
$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$$

* Variable transformations (if there's time). Commonly, taking the natural logarithm of the variables to reduce their skew.

* $Y = \alpha + \beta \log(X) + \epsilon$

* Both approaches are consistent with linearity assumptions: regression are still 'linear in the β s'.

* You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.
- * Characteristics of a parabolic curve:

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.
- * Characteristics of a parabolic curve:
- * It is **U-shaped** ('opening up') if $\beta_2 > 0$. It is **n-shaped** ('opening down') if $\beta_2 < 0$.

- * You might remember from high-school calculus the formula for a parabola: $y = ax^2 + bx + c$
- * A regression curve with the second-order polynomial of *X* has the same functional form: $\hat{Y} = \hat{\alpha} + \hat{\beta}_1 X + \hat{\beta}_2 X^2$.
- * Characteristics of a parabolic curve:
- * It is **U-shaped** ('opening up') if $\beta_2 > 0$. It is **n-shaped** ('opening down') if $\beta_2 < 0$.

* It has **one** bend, known as its vertex, given by $-\frac{\beta_1}{2\beta_2}$

The coefficient of x² determines whether the parabola opens up or down

Example

* Does **democracy** increase or decrease **trust in government**?

Example

* Does **democracy** increase or decrease **trust in government**?

Example

* Does **democracy** increase or decrease **trust in government**?

* We gather data on **Democracy** (0-10 scale) from V-Dem, and on the average country-level **Trust in Government** (1 = none at all, 4 = a great deal) from the World Values Survey (WVS).

Govt. Trust = $\alpha + \beta_1$ Democracy + ϵ

Govt. Trust = $\alpha + \beta_1$ Democracy + ϵ

Govt. Trust = $\alpha + \beta_1$ Democracy + ϵ

Residuals of Govt. Trust ~ Democracy

democracy

Govt. Trust = $\alpha + \beta_1$ Democracy + β_2 Democracy² + ϵ

Govt. Trust = $\alpha + \beta_1$ Democracy + β_2 Democracy² + ϵ

Residuals of Govt. Trust ~ Democracy + Democracy-squared

Confidence in Government, WVS

democracy

Second-Degree Polynomial: Coefficients

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

Second-Degree Polynomial: Coefficients

* **Sign** of β_2 : if $\beta_2 > 0$, U-shaped curve, if $\beta_2 < 0$, n-shaped curve.

 Dependent variable:

 Govt. Trust (1-4)

 Intercept
 3.337*** (0.152)

 Democracy
 -0.508*** (0.076)

 Democracy²
 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

- * **Sign** of β_2 : if $\beta_2 > 0$, U-shaped curve, if $\beta_2 < 0$, n-shaped curve.
- * **Significance** of β_2 : tests against the null that the relationship is linear.

 Dependent variable:

 Govt. Trust (1-4)

 Intercept
 3.337*** (0.152)

 Democracy
 -0.508*** (0.076)

 Democracy2
 0.046*** (0.008)

- * **Sign** of β_2 : if $\beta_2 > 0$, U-shaped curve, if $\beta_2 < 0$, n-shaped curve.
- * **Significance** of β_2 : tests against the null that the relationship is linear.
- * Vertex: $-\beta_1/(2\beta_2)$. This is where sign of the relationship changes — may fall outside the observed range of *X*.

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

* Usual interpretation of effect size
doesn't work: "holding all else
constant, a one-unit increase in *X* is
associated with a β₁ increase in *Y*."

 Dependent variable:

 Govt. Trust (1-4)

 Intercept
 3.337*** (0.152)

 Democracy
 -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

- * Usual interpretation of effect size
 doesn't work: "holding all else
 constant, a one-unit increase in *X* is
 associated with a β₁ increase in *Y*."
- * We can't hold all else constant. If we increase X, we also increase X^2 .

	Dependent variable.
	Govt. Trust (1–4)
Intercept	3.337*** (0.152)
Democracy	-0.508*** (0.076)
Democracy ²	$0.046^{***}(0.008)$

Donondont variable.

- * Usual interpretation of effect size
 doesn't work: "holding all else
 constant, a one-unit increase in *X* is
 associated with a β₁ increase in *Y*."
- * We can't hold all else constant. If we increase X, we also increase X^2 .
- At each value X the predicted rate
 of change in Y varies.

- * Usual interpretation of effect size
 doesn't work: "holding all else
 constant, a one-unit increase in *X* is
 associated with a β₁ increase in *Y*."
- * We can't hold all else constant. If we increase X, we also increase X^2 .
- * At each value *X* the predicted **rate of change** in *Y* varies.
- * Polynomial variable coefficients β₁
 and β₂ mean little on their own,
 they must be interpreted together

Dependent variable:

Govt. Trust (1–4)

Intercept 3.337*** (0.152)

Democracy -0.508*** (0.076)

Democracy² 0.046^{***} (0.008)

* **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5:

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5: * $-0.508 + 0.092 \times 5 = -0.048$

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5: * $-0.508 + 0.092 \times 5 = -0.048$
- * Rate of change in Democracy = 8:

- * **Instantaneous rate of change**, expressed by the **derivative**. The derivative of $\hat{Y} = \alpha + \beta_1 X + \beta_2 X^2$ in *X* is $\beta_1 + 2\beta_2 X$.
- * In our model, $-0.508 + 0.092 \times$ Democracy
- * Rate of change if Democracy = 1:
 - $* -0.508 + 0.092 \times 1 = -0.416$
- * Rate of change in Democracy = 5: * $-0.508 + 0.092 \times 5 = -0.048$
- * Rate of change in Democracy = 8:
 - * $-0.508 + 0.092 \times 8 = +0.228$, etc.

Polynomial Terms in R

> model1 <- lm(conf_goverment ~ democracy + I(democracy^2), data = qog)
> stargazer(model1, type = "text", single.row = TRUE)

	Dependent variable:		
	conf_goverment		
democracy I(democracy2) Constant	-0.508*** (0.076) 0.046*** (0.008) 3.337*** (0.152)		
Observations R2 Adjusted R2 Residual Std. Error F Statistic	76 0.417 0.401 0.366 (df = 73) 26.076*** (df = 2; 73)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Visualisation: Predicted Values Plot

Visualisation: Conditional Effect Plot

Check if you understand

* How does a leader's time in office affect spending in Chinese counties?

Dependent Variable: Annual Growth Rate	Party Secretary Model Coefficient (Standard Error)	
of Expenditures Per Capita Explanatory Variables		
(Time in office) ²	-0.3946**	-0.4860**
	(0.1728)	(0.2049)
Time in office	2.4793**	3.1624**
	(1.0212)	(1.2252)
Annual growth rate of revenues per capita	0.2493***	0.2589***
	(0.0142)	(0.0166)
Annual growth rate of subsidies per capita		0.1411***
		(0.0092)

* Guo, G. (2009). China's local political budget cycles. *American Journal of Political Science*, 53(3), 621-632.

* You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.

- * You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.
- * You always want to **include lower-order terms**. E.g., if you want to have X^3 , you should also have X^2 and X.

- * You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.
- * You always want to **include lower-order terms**. E.g., if you want to have X^3 , you should also have X^2 and X.
- * If a quadratic term doesn't improve the model, it's unlikely a cubic term will do, and so on. In practice, it (almost) never makes sense to go beyond a cubic.

- * You can add higher-order terms (X^3 , X^4 , etc.) to model more complex non-linearities. In general, a polynomial of order *n* corresponds to a curve with *n* – 1 bends.
- * You always want to **include lower-order terms**. E.g., if you want to have X^3 , you should also have X^2 and X.
- * If a quadratic term doesn't improve the model, it's unlikely a cubic term will do, and so on. In practice, it (almost) never makes sense to go beyond a cubic.
- * Interpretation gets trickier. Use visualisation tools to get a sense of what you're fitting.

 \mathbb{X}

CEA45 Archived @WhiteHouseCEA45 · Follow

Replying to @WhiteHouseCEA45

To better visualize observed data, we also continually update a curve-fitting exercise to summarize COVID-19's observed trajectory. Particularly with irregular data, curve fitting can improve data visualization. As shown, IHME's mortality curves have matched the data fairly well.

* Useful when dealing with variables that are **positive** and **right-skewed**:

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
 - * Population: 50% of countries below 10m people (10⁷).
 Then there's China and India, with 1bn people (10⁹).

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
 - * Population: 50% of countries below 10m people (10⁷).
 Then there's China and India, with 1bn people (10⁹).
 - * **GDP per capita:** 80% of countries below \$50k. Then, there's Luxembourg, Singapore and Qatar (> \$125k).

- * Useful when dealing with variables that are **positive** and **right-skewed**:
 - * **Income**: lots of people around the median income, and a handful of mega-rich.
 - * Population: 50% of countries below 10m people (10⁷).
 Then there's China and India, with 1bn people (10⁹).
 - * **GDP per capita:** 80% of countries below \$50k. Then, there's Luxembourg, Singapore and Qatar (> \$125k).
- * Linear relationships are unlikely with these variables as your predictors, outcomes or both.

Are Smaller Countries More Democratic?

* We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$
 - * $\log(1000) \approx 6.91$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$
 - * $\log(1000) \approx 6.91$
 - * $\log(10^6) \approx 13.82$

- * We can **unskew** these variables by taking their natural logarithm (notated as **log**, or **ln**). *Reminder*:
 - * If $\log(a) = b$, then $e^b = a$, where $e \approx 2.71828$.
- * How it works in practice:
 - $* \log(1) = 0$
 - * $\log(10) \approx 2.30$
 - * $\log(100) \approx 4.60$
 - * $\log(1000) \approx 6.91$
 - * $\log(10^6) \approx 13.82$
 - * (Careful: you can't take logs of zero or negative numbers!)

 * Famous paper: Acemoglu, D., Johnson, S., & Robinson, J.
 A. (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5), 1369-1401.

- * Famous paper: Acemoglu, D., Johnson, S., & Robinson, J.
 A. (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5), 1369-1401.
- * Argument: Colonial powers set up **extractive institutions** in places where they faced high mortality rates (due to e.g. diseases). Where they can settle easily, they set up **growthinducing institutions**, like property rights. Long-run growth is thus related to initial conditions faced by settlers:

- * Famous paper: Acemoglu, D., Johnson, S., & Robinson, J.
 A. (2001). The colonial origins of comparative development: An empirical investigation. *American Economic Review*, 91(5), 1369-1401.
- * Argument: Colonial powers set up **extractive institutions** in places where they faced high mortality rates (due to e.g. diseases). Where they can settle easily, they set up **growthinducing institutions**, like property rights. Long-run growth is thus related to initial conditions faced by settlers:
- * GDP in 1995 = $\alpha + \beta$ Settler Mortality + ϵ

GDP in 1995 = $\alpha + \beta$ Settler Mortality + ϵ

GDP in 1995 = $\alpha + \beta \log(\text{Settler Mortality}) + \epsilon$

 $\log(\text{GDP in 1995}) = \alpha + \beta \log(\text{Settler Mortality}) + \epsilon$

* Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $\log(Y) = \alpha + \beta X + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $\log(Y) = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100\%$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $log(Y) = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100\%$
- * **Log-Log** model $\log(Y) = \alpha + \beta \log(X) + \epsilon$

- * Interesting property of logarithms: can interpret the coefficients in terms of **percentage** change (an approximation, valid only for small increases).
- * **Level-Level** model $Y = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by β
- * **Level-Log** model $Y = \alpha + \beta \log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ predicted to change by ($\beta/100$)
- * **Log-Level** model $log(Y) = \alpha + \beta X + \epsilon$
 - * One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100\%$
- * **Log-Log** model $log(Y) = \alpha + \beta log(X) + \epsilon$
 - * 1% change in $X \rightarrow Y$ changes by $\beta\%$

> model1 <- lm(log(gdp_per_capita) ~ log(settler_mortality), data = colonialism)
> stargazer(model1, type = "text", single.row = TRUE)

	Dependent variable:
	log(gdp_per_capita)
log(settler_mortality) Constant	-0.570*** (0.078) 10.700*** (0.374)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	64 0.464 0.456 0.773 (df = 62) 53.766*** (df = 1; 62)
Note:	*p<0.1; **p<0.05; ***p<0.01

* Polynomial terms are a very flexible tool:

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.
- * Log-transformation are used more narrowly:

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.
- * Log-transformation are used more narrowly:
 - * Non-linearities produced by skewed, positive variables.
Wrap-Up: Non-Linearities

- * Polynomial terms are a very flexible tool:
 - * Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
 - * Including higher-order terms comes with the risk of overfitting. **Theory** should inform model specification.
- * Log-transformation are used more narrowly:
 - * Non-linearities produced by skewed, positive variables.
 - * **Assume proportional relationships**: halving *X* has approximately the same effect size on *Y* as doubling *X*.

Thank you for your kind attention!

Leonardo Carella leonardo.carella@nuffield.ox.ac.uk