

The Plan for Today

The Plan for Today

* Recap of Multiple Regression

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.

Women's earnings drop significantly after having a child. Men's don't.

Source: "Children and gender inequality: Evidence from Denmark," National Bureau of Economic Research

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.
* Non-linearities

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.
* Non-linearities
* Intuition: does money buy you happiness? Well, depends.

The Plan for Today

Average subjective happiness by equivalised household income percentile (after housing costs): UK, 2014-16

Notes: Each dot represents the average level of well-being for a percentile of household income (measured after housing costs), ranging from percentile 1 on the far left of the chart to percentile 100 on the far right. The lines are logarithmic lines of best fit.
Source: RF analysis of DWP, Family Resources Survey; pooled data for 2014-15 to 2016-17

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.
* Non-linearities
* Intuition: does money buy you happiness? Well, depends.

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.
* Non-linearities
* Intuition: does money buy you happiness? Well, depends.
* In the meantime, visualisation, visualisation, visualisation

The Plan for Today

* Recap of Multiple Regression
* Tying up some loose ends from last class, and a bit more on 'controlling'.
* Interactions
* Intuition: what's the effect of parenthood on earnings? Well, depends.
* Non-linearities
* Intuition: does money buy you happiness? Well, depends.
* In the meantime, visualisation, visualisation, visualisation
* With complex models, plots are much clearer than regression tables.

Regression: Recap

Multiple Linear Regression with OLS

Multiple Linear Regression with OLS

* Our model of reality:

Multiple Linear Regression with OLS

* Our model of reality:

$$
Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} \ldots \beta_{p} X_{p}+\epsilon
$$

Multiple Linear Regression with OLS

* Our model of reality:

$$
Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} \ldots \beta_{p} X_{p}+\epsilon
$$

Multiple Linear Regression with OLS

* Our model of reality:

$$
Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} \ldots \beta_{p} X_{p}+\epsilon
$$

* Where each β_{j} represents the average increase in Y associated with a one-unit increase in X_{j} holding the other variables constant.

Multiple Linear Regression with OLS

* Our model of reality:

$$
Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} \ldots \beta_{p} X_{p}+\epsilon
$$

* Where each β_{j} represents the average increase in Y associated with a one-unit increase in X_{j} holding the other variables constant.
* How do we pick the coefficients?

Multiple Linear Regression with OLS

* Our model of reality:

$$
Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} \ldots \beta_{p} X_{p}+\epsilon
$$

* Where each β_{j} represents the average increase in Y associated with a one-unit increase in X_{j} holding the other variables constant.
* How do we pick the coefficients?
* The most common method (not the only one!) is Ordinary Least Squares (OLS) - choose the combination of coefficients that minimise the sum of squared residuals.

Multiple Linear Regression with OLS

Multiple Linear Regression with OLS

* What are residuals? They are the difference between...

Multiple Linear Regression with OLS

* What are residuals? They are the difference between...
* The observed values of Y, that is $Y_{1}, Y_{2}, Y_{3}, Y_{4} \ldots Y_{n}$

Multiple Linear Regression with OLS

* What are residuals? They are the difference between...
* The observed values of Y, that is $Y_{1}, Y_{2}, Y_{3}, Y_{4} \ldots Y_{n}$
* And the fitted values \hat{Y} (that is $\hat{Y}_{1}, \hat{Y}_{2}, \hat{Y}_{3}, \hat{Y}_{4} \ldots \hat{Y}_{n}$) that we get at with out prediction line $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{3} X_{3} \ldots \hat{\beta}_{p} X_{p}$.

Multiple Linear Regression with OLS

* What are residuals? They are the difference between...
* The observed values of Y, that is $Y_{1}, Y_{2}, Y_{3}, Y_{4} \ldots Y_{n}$
* And the fitted values \hat{Y} (that is $\hat{Y}_{1}, \hat{Y}_{2}, \hat{Y}_{3}, \hat{Y}_{4} \ldots \hat{Y}_{n}$) that we get at with out prediction line $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{3} X_{3} \ldots \hat{\beta}_{p} X_{p}$.
* Each observation i will have its own residual $\hat{\epsilon}_{i}=Y_{i}-\hat{Y}_{i}$

Multiple Linear Regression with OLS

* What are residuals? They are the difference between...
* The observed values of Y, that is $Y_{1}, Y_{2}, Y_{3}, Y_{4} \ldots Y_{n}$
* And the fitted values \hat{Y} (that is $\hat{Y}_{1}, \hat{Y}_{2}, \hat{Y}_{3}, \hat{Y}_{4} \ldots \hat{Y}_{n}$) that we get at with out prediction line $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{3} X_{3} \ldots \hat{\beta}_{p} X_{p}$.
* Each observation i will have its own residual $\hat{\epsilon}_{i}=Y_{i}-\hat{Y}_{i}$
* So OLS will choose $Y=\hat{\alpha}+\hat{\beta}_{1} X_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{3} X_{3} \ldots \hat{\beta}_{p} X_{p}+\hat{\epsilon}$ so that $\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\sum_{i=1}^{n}\left(Y-\hat{Y}_{i}\right)^{2}$ is minimised.

Multiple Linear Regression with OLS

Dependent variable:

Life Satisfaction (0-10)

Age	$0.013^{* * *}(0.004)$
Income Decile	$0.163^{* * *}(0.019)$
Female	$0.288^{* * *}(0.100)$
Religiosity $(0-10)$	$0.022(0.017)$
Years of Education	$-0.003(0.014)$
Divorced	$-0.354(0.299)$
Single	$-0.118(0.131)$
Widowed	$-0.412^{* *}(0.189)$
Constant	$5.713^{* * *}(0.321)$

Observations	1,601
R 2	0.078
Adjusted R 2	0.073
Residual Std. Error	$1.947(\mathrm{df}=1592)$
F Statistic	$16.778^{* * *}(\mathrm{df}=8 ; 1592)$
Note:	"p<0.1; "*p<0.05; *" $\mathrm{p}<0.01$

Multiple Linear Regression with OLS

Multiple Linear Regression with OLS

* With OLS, we also estimate:

Multiple Linear Regression with OLS

* With OLS, we also estimate:
* The standard errors of the coefficient, which represents the (estimated) standard deviation of the sampling distribution of the coefficient, obtained through a (hypothetically) repeated sampling process, yielding different estimated coefficients every time.

Multiple Linear Regression with OLS

* With OLS, we also estimate:
* The standard errors of the coefficient, which represents the (estimated) standard deviation of the sampling distribution of the coefficient, obtained through a (hypothetically) repeated sampling process, yielding different estimated coefficients every time.
* The p-value of the coefficient, which represents the probability of obtaining a coefficient at least as extreme as the one estimated in our sample, under the null hypothesis that in the population there's no relationship between X and Y, conditional on covariates.

Multiple Linear Regression with OLS

* With OLS, we also estimate:
* The standard errors of the coefficient, which represents the (estimated) standard deviation of the sampling distribution of the coefficient, obtained through a (hypothetically) repeated sampling process, yielding different estimated coefficients every time.
* The p-value of the coefficient, which represents the probability of obtaining a coefficient at least as extreme as the one estimated in our sample, under the null hypothesis that in the population there's no relationship between X and Y , conditional on covariates.
* The adjusted R-squared, which quantifies the extent to which the model as a whole explains variation in the outcome variable.

Multiple Linear Regression with OLS

Call:
lm(formula = life_satisf ~ age + income_decile + female + religiosity + years_education + marital_status, data = ess)

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-8.1662	-0.8452	0.2721	1.2738	3.8794

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	5.712586	0.320715	17.812	$<2 \mathrm{e}-16^{* * *}$
age	0.013353	0.003510	3.804	$0.000148^{* * *}$
income_decile	0.163156	0.019339	8.437	$<2 \mathrm{e}-16^{* * *}$
female	0.287897	0.099643	2.889	$0.003914^{* *}$
religiosity	0.022203	0.016572	1.340	0.180513
years_education	-0.003186	0.014112	-0.226	0.821429
marital_status divorced	-0.353683	0.299287	-1.182	0.237480
marital_status single	-0.118078	0.130715	-0.903	0.366491
marital_status widowed	-0.412239	0.188733	-2.184	$0.029090 *$

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1
Residual standard error: 1.947 on 1592 degrees of freedom (603 observations deleted due to missingness)
Multiple R-squared: 0.07776, Adjusted R-squared: 0.07312
F-statistic: 16.78 on 8 and 1592 DF, p-value: < 2.2e-16

OLS Assumptions

OLS Assumptions

1. Linearity

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

* In the sample, none of the independent variables are constant, and there are no exact linear relationships between independent variables.

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

* In the sample, none of the independent variables are constant, and there are no exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

* In the sample, none of the independent variables are constant, and there are no exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

* The error term has a mean of zero and is unrelated to any of the Xs. Many potential violations in practice: omitted variable bias, non-linear relationships, reverse causality.

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

* In the sample, none of the independent variables are constant, and there are no exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

* The error term has a mean of zero and is unrelated to any of the Xs. Many potential violations in practice: omitted variable bias, non-linear relationships, reverse causality.

If assumptions 1-4 are satisfied, our OLS coefficient estimates are unbiased

OLS Assumptions

1. Linearity

* The model in the population (the 'true' model) can be written as a linear combination of variables and coefficients: $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \ldots \beta_{p} X_{p}+\epsilon$.

2. Random Sampling

* We have a random sample of n observations, following the population model.

3. No Perfect Collinearity

* In the sample, none of the independent variables are constant, and there are no exact linear relationships between independent variables.

4. Zero Conditional Mean (Exogeneity)

* The error term has a mean of zero and is unrelated to any of the Xs. Many potential violations in practice: omitted variable bias, non-linear relationships, reverse causality.

If assumptions 1-4 are satisfied, our OLS coefficient estimates are unbiased

* We also assume 5. Homoskedasticity and 6. Normality, rushed through last time...

Homoskedasticity

Homoskedasticity

* Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the X s.

Homoskedasticity

* Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the X s.
* We may diagnose that this is likely not the case (heteroskedasticity) from plotting the residuals against the independent variable.

Homoskedasticity

* Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the X s.
* We may diagnose that this is likely not the case (heteroskedasticity) from plotting the residuals against the independent variable.
* Biases standard errors, but not coefficients.

Homoskedasticity

* Default Standard Errors are computed assuming the population regression has constant variance (homoskedasticity) across values of the X s.
* We may diagnose that this is likely not the case (heteroskedasticity) from plotting the residuals against the independent variable.
* Biases standard errors, but not coefficients.
* One popular fix: heteroskedasticity-consistent standard errors (more conservative).

Violation of Homoskedasticity Assumption

Heteroskedastic Data

Violation of Homoskedasticity Assumption

Non-Constant Variance in the Residuals of Food Expenditure ~ Earnings

Normality of the Error Term

Normality of the Error Term

* The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).

Normality of the Error Term

* The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
* To calculate the t-statistic and the p-value, we need to know the full sampling distribution of the estimate. This depends on (unobserved) population errors.

Normality of the Error Term

* The error term is independent of the explanatory variables (zero conditional mean), has constant variance (homoskedasticity) and is normally distributed (normality).
* To calculate the t-statistic and the p-value, we need to know the full sampling distribution of the estimate. This depends on (unobserved) population errors.
* Useful to assume that they are normally distributed (as we model them as 'random').

Normality of the Error Term

Normality of the Error Term

Normality of the Error Term

* Least worrisome of the OLS assumptions:

Normality of the Error Term

* Least worrisome of the OLS assumptions:
* Only affects inferential statistics, not coefficients or S.E.

Normality of the Error Term

* Least worrisome of the OLS assumptions:
* Only affects inferential statistics, not coefficients or S.E.
* With correct model specifications, your residuals will vary (approximately) randomly. In large samples, this will give you a normal distribution. But no guarantee in small samples.

Normality of the Error Term

* Least worrisome of the OLS assumptions:
* Only affects inferential statistics, not coefficients or S.E.
* With correct model specifications, your residuals will vary (approximately) randomly. In large samples, this will give you a normal distribution. But no guarantee in small samples.
* Non-normal errors are usually the result of linearity assumption not holding. If you fix that, things are usually fine.

Normality of the Error Term

* Least worrisome of the OLS assumptions:
* Only affects inferential statistics, not coefficients or S.E.
* With correct model specifications, your residuals will vary (approximately) randomly. In large samples, this will give you a normal distribution. But no guarantee in small samples.
* Non-normal errors are usually the result of linearity assumption not holding. If you fix that, things are usually fine.
* Visual check: histogram of residuals.

Normality of the Error Term

Residuals of Pct. Leave \sim Pct. Degrees + Region

What Variables Should I Control For?

What Variables Should I Control For?

* Goal of 'controlling': accounting for omitted variable bias.

What Variables Should I Control For?

* Goal of 'controlling': accounting for omitted variable bias.
* Visually, close 'back doors' to the causal path $X \rightarrow Y$

What Variables Should I Control For?

* Goal of 'controlling': accounting for omitted variable bias.
* Visually, close 'back doors' to the causal path $X \rightarrow Y$

Without controlling for
Z, the ATE of X on Y is positively biased

What Variables Should I Control For?

* Goal of 'controlling': accounting for omitted variable bias.
* Visually, close 'back doors' to the causal path $X \rightarrow Y$

Without controlling for
Z, the ATE of X on Y is positively biased

Without controlling for
Z, the ATE of X on Y is negatively biased

What Variables Should I Control For?

What Variables Should I Control For?

* Adapted from Cinelli et al (2022)

What Variables Should I Control For?

* Adapted from Cinelli et al (2022)
* Back-door criterion: Z is a 'good control' if

What Variables Should I Control For?

* Adapted from Cinelli et al (2022)
* Back-door criterion: Z is a 'good control' if

1. Z is not a descendant of X (not post-treatment), and

What Variables Should I Control For?

(a)

(b)

(c)

* Adapted from Cinelli et al (2022)
* Back-door criterion: Z is a 'good control' if

1. Z is not a descendant of X (not post-treatment), and
2. Z blocks a path between X and Y that contains an arrow into X.

What Variables Should I Control For?

(a)

(b)

(c)

* Adapted from Cinelli et al (2022)
* Back-door criterion: Z is a 'good control' if

1. Z is not a descendant of X (not post-treatment), and
2. Z blocks a path between X and Y that contains an arrow into X.

* i.e. Z is a common cause of X and $Y(a)$ or is the mediator of the relationship between an unobserved common cause U and either X or Y (respectively, b and c).

What Variables Should I Not Control For?

What Variables Should I Not Control For?

* If Z descends from of X (post-treatment variable): bad idea.

What Variables Should I Not Control For?

* If Z descends from of X (post-treatment variable): bad idea.

* Adapted from Cinelli et al (2022)

What Variables Should I Not Control For?

* If Z descends from of X (post-treatment variable): bad idea.
* These can: (1) block the causal path $X \rightarrow Y(d)$, (2) are effects of the outcome (e), or (3) open a backdoor path to a previously unbiased causal path $(f, g$ and h).

* Adapted from Cinelli et al (2022)

Control for all pre-treatment variables?

Control for all pre-treatment variables?

* Usually pre-treatment variables are good (a, b and c) or neutral (i and j).

(i)

(j)

Control for all pre-treatment variables?

* Usually pre-treatment variables are good (a, b and c) or neutral (i and j).
* But in presence of unobserved confounders, 'pointless' control can make existing bias worse (k).

(i)

(j)

(k)

Control for all pre-treatment variables?

* Usually pre-treatment variables are good (a, b and c) or neutral (i and j).
* But in presence of unobserved confounders, 'pointless' control can make existing bias worse (k).

(k)

(l)

Control for all pre-treatment variables?

* Usually pre-treatment variables are good (a, b and c) or neutral (i and j).
* But in presence of unobserved confounders, 'pointless' control can make existing bias worse (k).
* Also, they can be a problem if they open a backdoor path (l, collider bias).
* Bottom line: theory should inform your choice of controls, not data availability.

Interactions

Example

Example

* Are graduates more worried about climate change?

Example

* Are graduates more worried about climate change?
* Climate Worry $=\alpha+\beta$ Degree $+\epsilon$

Example

* Are graduates more worried about climate change?
* Climate Worry $=\alpha+\beta$ Degree $+\epsilon$
* What's a possible confounder?

Example

* Are graduates more worried about climate change?
* Climate Worry $=\alpha+\beta$ Degree $+\epsilon$
* What's a possible confounder?
* Ideology? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.

Example

* Are graduates more worried about climate change?
* Climate Worry $=\alpha+\beta$ Degree $+\epsilon$
* What's a possible confounder?
* Ideology? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.
* Ideology may be partly endogenous to education, but for now let's make peace with that, and fit:

Example

* Are graduates more worried about climate change?
* Climate Worry $=\alpha+\beta$ Degree $+\epsilon$
* What's a possible confounder?
* Ideology? Left-wingers are more likely to go to university, and being left-wing makes you worry about climate.
* Ideology may be partly endogenous to education, but for now let's make peace with that, and fit:
* Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\epsilon$

Example: Regression Table

Dependent variable:

	Dependent variable:
	wrclmch
educationdegree	$\begin{gathered} 0.275 * * * \\ (0.049) \end{gathered}$
ideologyleft	$\begin{gathered} 0.235 * * * \\ (0.049) \end{gathered}$
Constant	$\begin{gathered} 2.712 * * * \\ (0.044) \end{gathered}$
Observations	1,699
R2	0.031
Adjusted R2	0.030
Residual Std. Error	0.923 ($\mathrm{df}=1696)$
F Statistic	27.511*** ($\mathrm{df}=2$ 2 1696)
Note:	*p<0.1; **p<0.05; ***p<0.0

Example: Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)

Example: Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)

Example: Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)

Example: Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)

Solution: Interaction Term

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:
Climate Worry (1-5)

Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)
Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

	Degree $=0$	Degree $=1$
Left $=0$		
Left $=1$		

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)		Degree $=0$	Degree $=1$
Intercept	$2.793^{* * *}(0.05)$	Left $=0$	2.793	
Degree	$-0.012(0.09)$			
Left	$0.121^{* *}(0.06)$	Left $=1$		
Degree \times Left	$0.398^{* * *}(0.11)$			

* If Degree $=0$ and Left $=0$, then

$$
\hat{Y}=\alpha+\beta_{1}(0)+\beta_{2}(0)+\beta_{3}(0 \times 0)=\alpha
$$

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)
Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

	Degree $=0$	Degree $=1$
Left $=0$	2.793	
Left $=1$		

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)		Degree $=0$	Degree $=1$
Intercept	$2.793^{* * *}(0.05)$	Left $=0$	2.793	2.781
Degree	$-0.012(0.09)$			
Left	$0.121^{* * *}(0.06)$	Left $=1$		
Degree \times Left	$0.398^{* * *}(0.11)$			

* If Degree $=1$ and Left $=0$, then

$$
\hat{Y}=\alpha+\beta_{1}(1)+\beta_{2}(0)+\beta_{3}(1 \times 0)=\alpha+\beta_{1}
$$

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)
Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

	Degree $=0$
Left $=0$	2.793
Left $=1$	

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)		Degree $=0$	Degree $=1$
Intercept	$2.793^{* * *}(0.05)$	Left $=0$	2.793	2.781
Degree	$-0.012(0.09)$			
Left	$0.121^{* * *}(0.06)$	Left $=1$	2.914	
Degree \times Left	$0.398^{* * *}(0.11)$			

* If Degree $=0$ and Left $=1$, then

$$
\hat{Y}=\alpha+\beta_{1}(0)+\beta_{2}(1)+\beta_{3}(0 \times 1)=\alpha+\beta_{2}
$$

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)
Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

	Degree $=0$
Degree $=1$	
Left =0	2.793

Solution: Interaction Term

Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}($ Degree \times Left $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)		Degree $=0$	Degree $=1$
Intercept	$2.793^{* * *}(0.05)$	Left $=0$	2.793	2.781
Degree	$-0.012(0.09)$			
Left	$0.121^{* * *}(0.06)$	Left $=1$	2.914	3.312
Degree \times Left	$0.398^{* * *}(0.11)$			

* If Degree $=0$ and Left $=0$, then

$$
\hat{Y}=\alpha+\beta_{1}(1)+\beta_{2}(1)+\beta_{3}(1 \times 1)=\alpha+\beta_{1}+\beta_{2}+\beta_{3}
$$

Solution: Interaction Term

Predicted Worry about Climate Change (1-5 scale)

Interaction Terms in R

```
Call:
lm(formula = wrclmch ~ education + ideology + education * ideology,
    data = ess)
Residuals:
    Min 1Q Median 
Coefficients:
(Intercept) 2.79261 0.04900 56.997 < 2e-16
educationdegree -0.01159 0.09257 -0.125 0.90036
ideologyleft 0.12120 0.05829 2.079 0.03776 *
educationdegree:ideologyleft 0.39805 0.10906 3.650 0.00027 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.9192 on 1695 degrees of freedom
    (260 observations deleted due to missingness)
Multiple R-squared: 0.03898, Adjusted R-squared: 0.03727
F-statistic: 22.91 on 3 and 1695 DF, p-value: 1.533e-14
```


Interaction Terms in R

Interaction Terms in R

* Note, in R you will get the same result if you run:

Interaction Terms in R

* Note, in R you will get the same result if you run:

```
lm(wrclmch ~ education + ideology + education*ideology, data = ess)
lm(wrclmch ~ education*ideology, data = ess)
```


Interaction Terms in R

* Note, in R you will get the same result if you run:

```
lm(wrclmch ~ education + ideology + education*ideology, data = ess)
lm(wrclmch ~ education*ideology, data = ess)
```

* This is a really good feature of $\operatorname{lm}()$. Whenever you have interaction terms, you always want to control for the parent terms (education and ideology) as well as the interaction term.

Interaction Terms in R

* Note, in R you will get the same result if you run:

```
lm(wrclmch ~ education + ideology + education*ideology, data = ess)
lm(wrclmch ~ education*ideology, data = ess)
```

* This is a really good feature of $\operatorname{lm}()$. Whenever you have interaction terms, you always want to control for the parent terms (education and ideology) as well as the interaction term.
* There is a way of telling R to include only the interaction term (education \times ideology), but it's best you don't know because this is wrong 99% of the times.

Interpreting Interaction Terms

Dependent variable:

Climate Worry (1-5)

Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$

Degree \times Left $\quad 0.398^{* * *}(0.11)$

Interpreting Interaction Terms

* We call 'Left' the moderator, because it moderates the effect of our treatment (Degree).

Dependent variable:

Climate Worry (1-5)

Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

Interpreting Interaction Terms

* We call 'Left' the moderator,

Dependent variable:
because it moderates the effect of our treatment (Degree).

Climate Worry (1-5)

* The coefficient for the treatment (Degree) is the effect of the variable when the moderator (Left) is zero.

	Climate Worry (1-5)
Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

Interpreting Interaction Terms

* We call 'Left' the moderator, our treatment (Degree).

Climate Worry (1-5)

Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$
Degree \times Left	$0.398^{* * *}(0.11)$

* The coefficient for the moderator (Left) is the effect of the variable when the treatment (Degree) is zero.

Interpreting Interaction Terms

Dependent variable:

Climate Worry (1-5)

Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$

Degree \times Left $\quad 0.398^{* * *}(0.11)$

Interpreting Interaction Terms

* The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left $=0$ to Left $=1$.

Dependent variable:

Climate Worry (1-5)

Intercept	$2.793^{* * *}(0.05)$
Degree	$-0.012(0.09)$
Left	$0.121^{* *}(0.06)$

Degree \times Left $0.398^{* * *}(0.11)$

Interpreting Interaction Terms

* The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left $=0$ to Left $=1$.
* Statistical significance (p-value) of the interaction tests against the null that the effect of the treatment

Climate Worry (1-5)
Intercept $2.793^{* * *}(0.05)$

Degree
Left $0.121^{* *}(0.06)$
Degree \times Left $0.398^{* * *}(0.11)$ is the same across subgroups.

Interpreting Interaction Terms

* The coefficient for the interaction term represents the difference in the effect of 'Degree' as we move from Left $=0$ to Left $=1$.
* Statistical significance (p-value) of the interaction tests against the null that the effect of the treatment

$$
\text { Degree } \times \text { Left } \quad 0.398^{* * *}(0.11)
$$

Dependent variable:

Climate Worry (1-5)
Intercept $\quad 2.793^{* * *}(0.05)$
Degree $\quad-0.012(0.09)$
Left $0.121^{* *}(0.06)$

* Here: large and significant - we do have an important interaction.

Categorical Moderators with More Levels

Categorical Moderators with More Levels

* What about the Centrists? Recode Ideology as a threecategory variable. Now, the model is:

Categorical Moderators with More Levels

* What about the Centrists? Recode Ideology as a threecategory variable. Now, the model is:
* Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}$ Centrist + $\beta_{4}($ Degree \times Left $)+\beta_{5}($ Degree \times Centrist $)+\epsilon$

Categorical Moderators with More Levels

* What about the Centrists? Recode Ideology as a threecategory variable. Now, the model is:
* Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}$ Centrist + $\beta_{4}($ Degree \times Left $)+\beta_{5}($ Degree \times Centrist $)+\epsilon$
* In R, just pass the categorical variable:

Categorical Moderators with More Levels

* What about the Centrists? Recode Ideology as a threecategory variable. Now, the model is:
* Climate Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ Left $+\beta_{3}$ Centrist +
$\beta_{4}($ Degree \times Left $)+\beta_{5}($ Degree \times Centrist $)+\epsilon$
* In R, just pass the categorical variable:

\# or equivalently

Categorical Moderators with More Levels

Continuous Moderators

Continuous Moderators

* What if we want to measure ideology with a 0-10 scale?

Continuous Moderators

* What if we want to measure ideology with a 0-10 scale?

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ Degree \times R-L Scale $)+\epsilon$

Continuous Moderators

* What if we want to measure ideology with a 0-10 scale?

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ Degree \times R-L Scale $)+\epsilon$

* β_{1} is the estimate for the effect of 'Degree' on 'Worry' when 'R-L Scale' is zero (i.e. for the most right-wing).

Continuous Moderators

* What if we want to measure ideology with a 0-10 scale?

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ Degree \times R-L Scale $)+\epsilon$

* β_{1} is the estimate for the effect of 'Degree' on 'Worry' when 'R-L Scale' is zero (i.e. for the most right-wing).
* β_{2} is the predicted change in 'Worry' associated with of a oneunit increase in 'R-L Scale' when 'Degree' is zero (i.e. for nongraduates).

Continuous Moderators

* What if we want to measure ideology with a 0-10 scale?

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ Degree \times R-L Scale $)+\epsilon$

* β_{1} is the estimate for the effect of 'Degree' on 'Worry' when 'R-L Scale' is zero (i.e. for the most right-wing).
* β_{2} is the predicted change in 'Worry' associated with of a oneunit increase in 'R-L Scale' when 'Degree' is zero (i.e. for nongraduates).
* β_{3} is tricky: it's the change in the effect of 'Degree' on 'Worry' as we increase the value of 'L-R Scale' by one unit. Easier to interpret significance and direction, use plots to show effect size.

Continuous Moderators

Continuous Moderators

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ R-L Scale \times Degree $)+\epsilon$

Continuous Moderators

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ R-L Scale \times Degree $)+\epsilon$
Dependent variable:

Climate Worry (1-5)

Intercept
Degree
R-L Scale
Degree \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ R-L Scale \times Degree $)+\epsilon$
Dependent variable:

	Climate Worry (1-5)
Intercept	$2.544 * * *(0.075)$
Degree	
R-L Scale	

Degree \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ R-L Scale \times Degree $)+\epsilon$ Dependent variable:
$\beta_{1}=$ effect of 'Degree' on 'Worry' when 'R-L Scale' is zero

R-L Scale
Degree \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ R-L Scale \times Degree $)+\epsilon$ Dependent variable:
$\beta_{1}=$ effect of 'Degree' on 'Worry' when ' R -L Scale' is zero
$\beta_{2}=$ effect of a one-unit increase in 'R-L Scale' on 'Worry' when 'Degree' is zero

Climate Worry (1-5)
$2.544^{* * *}(0.075)$
$\xrightarrow[\text { D-L Scale }]{\text { Degree }}$
Degree \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ Degree $+\beta_{2}$ R-L Scale $+\beta_{3}($ R-L Scale \times Degree $)+\epsilon$ Dependent variable:
$\beta_{1}=$ effect of 'Degree' on 'Worry' when ' R -L Scale' is zero
$\beta_{2}=$ effect of a one-unit increase in 'R-L Scale' on 'Worry' when Degree 'Degree' is zero
$\beta_{3}=$ change in the effect of 'Degree' on 'Worry' as we

Degree \times R-L Scale $\longrightarrow 0.068^{* * *}(0.025)$ increase the value of 'L-R Scale' by one unit.

Visualising Continuous Moderators (1)

Visualising Continuous Moderators (1)

* One solution: pick some representative values of the moderator and show predicted values of Y across treatment conditions.

Visualising Continuous Moderators (1)

* One solution: pick some representative values of the moderator and show predicted values of Y across treatment conditions.
* Some options:

Visualising Continuous Moderators (1)

* One solution: pick some representative values of the moderator and show predicted values of Y across treatment conditions.
* Some options:
* Minimum and Maximum value.

Predicted Worry about Climate Change (1-5 scale)

Visualising Continuous Moderators (1)

* One solution: pick some representative values of the moderator and show predicted values of Y across treatment conditions.
* Some options:
* Minimum and
Maximum value.
* Quartiles of the
distribution.
* Minimum and
Maximum value.
* Quartiles of the
distribution.
* Minimum and
Maximum value.
* Quartiles of the
distribution.
* Minimum and
Maximum value.
* Quartiles of the
distribution.

Predicted Worry about Climate Change ($1-5$ scale)

Visualising Continuous Moderators (1)

* One solution: pick some representative values of the moderator and show predicted values of Y across treatment conditions.
* Some options:
* Minimum and Maximum value.
* Quartiles of the distribution.
* Mean plus and minus one std. deviation.

Predicted Worry about Climate Change ($1-5$ scale)

Visualising Continuous Moderators (2)

Visualising Continuous Moderators (2)

* A second solution: plot the effect of the treatment (Y-axis) by the value of the moderator (X-axis). This is known as a conditional effect plot.

Visualising Continuous Moderators (2)

* A second solution: plot the effect of the treatment (Y-axis) by the value of the moderator (X-axis). This is known as a conditional effect plot.

Conditional Effect of Having Degree on
Climate Worry, Conditional On Right-Left Ideology

Continuous Treatment and Moderator

Continuous Treatment and Moderator

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

Continuous Treatment and Moderator

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

> Worry $=\alpha+\beta_{1}$ EduYears $+\beta_{2}$ R-L Scale $+\beta_{3}($ EduYears \times R-L Scale $)+\epsilon$

Continuous Treatment and Moderator

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

$$
\begin{gathered}
\text { Worry }=\alpha+\beta_{1} \text { EduYears }+\beta_{2} \text { R-L Scale } \\
+\beta_{3}(\text { EduYears } \times \text { R-L Scale })+\epsilon
\end{gathered}
$$

* Both linear coefficients refer to effect of a one-unit change.

Continuous Treatment and Moderator

* What if we want to measure education as an interval variable? For instance, 'years of education'. Same set-up:

$$
\begin{gathered}
\text { Worry }=\alpha+\beta_{1} \text { EduYears }+\beta_{2} \text { R-L Scale } \\
+\beta_{3}(\text { EduYears } \times \text { R-L Scale })+\epsilon
\end{gathered}
$$

* Both linear coefficients refer to effect of a one-unit change.
* The interaction term's coefficient is the estimated change in the effect of one year of education on Climate Worry, associated with a one-point increase in the R-L scale.

Continuous Moderators

Continuous Moderators

Worry $=\alpha+\beta_{1}$ EduYears $+\beta_{2}$ R-L Scale + $\beta_{3}($ R-L Scale \times EduYears $)+\epsilon$

Continuous Moderators

Worry $=\alpha+\beta_{1}$ EduYears $+\beta_{2}$ R-L Scale + $\beta_{3}($ R-L Scale \times EduYears $)+\epsilon$

Intercept
Edu Years
R-L Scale

Edu Years \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ EduYears $+\beta_{2}$ R-L Scale + $\beta_{3}($ R-L Scale \times EduYears $)+\epsilon$

Dependent variable:

	Climate Worry (1-5)
Intercept	$2.622 * * *(0.246)$
Edu Years	
R-L Scale	

Edu Years \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ EduYears $+\beta_{2}$ R-L Scale + $\beta_{3}($ R-L Scale \times EduYears $)+\epsilon$

Dependent variable:
$\beta_{1}=$ effect of one additional Year of Education when 'R-L Scale' is zero

R-L Scale

Edu Years \times R-L Scale

Continuous Moderators

Worry $=\alpha+\beta_{1}$ EduYears $+\beta_{2}$ R-L Scale + $\beta_{3}($ R-L Scale \times EduYears $)+\epsilon$

Dependent variable:
$\beta_{1}=$ effect of one additional Year of Education when ' R -L Scale' is zero
$\beta_{2}=$ effect of a one-point increase in 'R-L Scale' on 'Worry' when Years of Education is zero

Edu Years \times R-L Scale

Continuous Moderators

$$
\begin{gathered}
\text { Worry }=\alpha+\beta_{1} \mathrm{EduYears}+\beta_{2} \mathrm{R} \text {-L Scale }+ \\
\quad \beta_{3}(\mathrm{R}-\mathrm{L} \text { Scale } \times \text { EduYears })+\epsilon
\end{gathered}
$$

$\beta_{1}=$ effect of one additional Year of Education when ' R -L Scale' is zero
$\beta_{2}=$ effect of a one-point increase in 'R-L Scale' on 'Worry' when Years of Education is zero

$\beta_{3}=$ change in the effect of one additional Year of Education on

$$
\text { Edu Years } \times \text { R-L Scale } 0.008^{* * *}(0.003)
$$

'Worry' as we increase the value

 of 'L-R Scale' by one point.
Predicted Values Plot

Predicted Worry about Climate Change (1-5 scale)

Right-Left Scale \square 3.2 (mean - 1sd) \square 5.1 (mean) \square 7 (mean + 1sd)

Conditional Effects Plot

Effect of One Additional Year of Education On
Climate Worry, Conditional On Right-Left Ideology

Interaction Terms: Handle with Care

Interaction Terms: Handle with Care

* Always include both the 'parent' terms in a model with an interaction. $\operatorname{lm}()$ forces you to do that, thankfully.

Interaction Terms: Handle with Care

* Always include both the 'parent' terms in a model with an interaction. $\operatorname{lm}()$ forces you to do that, thankfully.
* It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.

Interaction Terms: Handle with Care

* Always include both the 'parent' terms in a model with an interaction. $\operatorname{lm}()$ forces you to do that, thankfully.
* It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.
* Software and math do not distinguish between treatment and moderator: the models we've just seen could be just as good to get at the effect of ideology on climate worry, conditional on education.

Interaction Terms: Handle with Care

* Always include both the 'parent' terms in a model with an interaction. $\operatorname{lm}()$ forces you to do that, thankfully.
* It follows that moderators appear in your formula as covariates: therefore, for causal interpretation, you should use variables that are plausibly pre-treatment.
* Software and math do not distinguish between treatment and moderator: the models we've just seen could be just as good to get at the effect of ideology on climate worry, conditional on education.
* It's up to you to interpret things correctly.

Interaction Terms: Handle with Care

Interaction Terms: Handle with Care

* You should have a strong theoretical reason to use an interaction term. Don't be this person:

Interaction Terms: Handle with Care

* You should have a strong theoretical reason to use an interaction term. Don't be this person:
- "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."

Interaction Terms: Handle with Care

* You should have a strong theoretical reason to use an interaction term. Don't be this person:
- "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."
- "Nothing. Maybe it's race? Nope. Hair colour? Nada. Maybe it's a triple interaction - treatment \times race \times gender? Maybe the treatment only works for people born in odd years."

Interaction Terms: Handle with Care

* You should have a strong theoretical reason to use an interaction term. Don't be this person:
- "I spent a year collecting all these data and I got a null result. Maybe the treatment works differently for men and women. Let's try adding an interaction for gender."
- "Nothing. Maybe it's race? Nope. Hair colour? Nada. Maybe it's a triple interaction - treatment \times race \times gender? Maybe the treatment only works for people born in odd years."
* Potentially infinite combinations of interaction terms. You will get 'lucky' and find something significant at some point.

Interaction Terms: Handle with Care

Interaction Terms: Handle with Care

* Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be noisy.

Interaction Terms: Handle with Care

* Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be noisy.
* Our main effects are already noisy, because they're estimated with uncertainty.

Interaction Terms: Handle with Care

* Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be noisy.
* Our main effects are already noisy, because they're estimated with uncertainty.
* Interactions estimate a difference between two noisy things. So they're even noisier. Surprisingly big effects could pop up because of a few outliers.

Interaction Terms: Handle with Care

* Temptation for 'fishing' with interactions is particularly strong also because interactions tend to be noisy.
* Our main effects are already noisy, because they're estimated with uncertainty.
* Interactions estimate a difference between two noisy things. So they're even noisier. Surprisingly big effects could pop up because of a few outliers.
* You need very large sample sizes to estimate an interaction effect precisely ($16 \times$ larger than for a main effect).

Interaction Terms: Handle with Care

Interaction Terms: Handle with Care

* More on pitfalls of interactions:

Interaction Terms: Handle with Care

* More on pitfalls of interactions:
* Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." Political Analysis 14(1), 63-82.

Interaction Terms: Handle with Care

* More on pitfalls of interactions:
* Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." Political Analysis 14(1), 63-82.
* Hainmueller, J., Mummolo, J., \& Xu, Y. (2019). "How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice." Political Analysis, 27(2), 163-192.

Interaction Terms: Handle with Care

* More on pitfalls of interactions:
* Brambor, T., Clark, W., and Golder, M. (2006) "Understanding interaction models: Improving empirical analyses." Political Analysis 14(1), 63-82.
* Hainmueller, J., Mummolo, J., \& Xu, Y. (2019). "How much should we trust estimates from multiplicative interaction models? Simple tools to improve empirical practice." Political Analysis, 27(2), 163-192.
* Gelman, A. (2023) "You need 16 times the sample size to estimate an interaction than to estimate a main effect, explained", blogpost in Statistical Modeling, Causal Inference, and Social Science.

Check if you understand (1)

* Does 'winning' (i.e. voting for the party that forms the government) make people feel happier?

Random Intercept, Interaction

Winner	$.101^{* * *}(.021)$
Corruption	$-.079^{* * *}(.029)$
Winner*Corruption	$-.014^{* *}(.007)$
Nonvoter	$-.034^{* *}(.018)$
Left-right self-placement	$.018^{* * *}(.003)$
Constant	$3.166^{* * *}(.522)$
Variance components	
Country	$.018^{* * *}(.006)$
Individual	$.435^{* * *}(.005)$
-2 log likelihood	$26,133.8$
N at Level 1	12,996
N at Level 2	16

Check if you understand (1)

Marginal Effect of Winner on Subjective Well-Being at Different Levels of Corruption, European Sample

* Does 'winning' (i.e. voting for the party that forms the government) make people feel happier?

Margit Tavits (2008) Representation, Corruption, and Subjective Well-Being, CPS.

Check if you understand (2)

* Does telling people their party is going to lose the next election (threat treatment vs reassurance control) make them angrier?

	Anger and Party Threat	
	1	2
Partisan strength	$-.01(.03)$	$.01(.03)$
Partisan identity	-	$-.07(.07)$
Party threat/reassurance	$.26(.06)^{* * *}$	$.03(.08)$
Partisan strength \times threat/reassurance	$.10(.04)^{* *}$	$-.01(.04)$
Partisan identity \times threat/reassurance	$-06(.05)$	$.44(.09)^{* * *}$
Ideological issue intensity	$-.03(.07)$	$-.03(.05)$
Ideological intensity \times threat/reassurance	$-.19(.10)^{*}$	$-.19(.09)^{* *}$
Knowledge	$-.04(.02)^{* *}$	$-.03(.02)^{*}$
Gender (male)	$-.05(.04)$	$-.04(.04)$
Education	$.01(.01)$	$.00(.01)$
Age (decades)	$.42(.11)^{* * *}$	$.46(.11)^{* * *}$
Constant	0.22	0.24
Adj. R^{2}	1482	1482
N		

Check if you understand (2)

* Does telling people their party is going to lose the next election (threat treatment vs reassurance control) make them angrier?
A. Blog Study: Anger

Non-Linearities

Dealing with Non-Linearities

Dealing with Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).

Dealing with Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).
* $Y=\alpha+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\epsilon$

Dealing with Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).
* $Y=\alpha+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\epsilon$
* Variable transformations (if there's time). Commonly, taking the natural logarithm of the variables to reduce their skew.

Dealing with Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).
* $Y=\alpha+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\epsilon$
* Variable transformations (if there's time). Commonly, taking the natural logarithm of the variables to reduce their skew.
* $Y=\alpha+\beta \log (X)+\epsilon$

Dealing with Non-Linearities

* Polynomial terms (main focus today). Introducing as regressors a variable and powers of the same variable (usually: squared, but you can add cubed, fourth power etc.).
* $Y=\alpha+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\epsilon$
* Variable transformations (if there's time). Commonly, taking the natural logarithm of the variables to reduce their skew.
* $Y=\alpha+\beta \log (X)+\epsilon$
* Both approaches are consistent with linearity assumptions: regression are still 'linear in the $\beta \mathrm{s}^{\prime}$.

Second-Degree Polynomial

Second-Degree Polynomial

* You might remember from high-school calculus the formula for a parabola: $y=a x^{2}+b x+c$

Second-Degree Polynomial

* You might remember from high-school calculus the formula for a parabola: $y=a x^{2}+b x+c$
* A regression curve with the second-order polynomial of X has the same functional form: $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X+\hat{\beta}_{2} X^{2}$.

Second-Degree Polynomial

* You might remember from high-school calculus the formula for a parabola: $y=a x^{2}+b x+c$
* A regression curve with the second-order polynomial of X has the same functional form: $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X+\hat{\beta}_{2} X^{2}$.
* Characteristics of a parabolic curve:

Second-Degree Polynomial

* You might remember from high-school calculus the formula for a parabola: $y=a x^{2}+b x+c$
* A regression curve with the second-order polynomial of X has the same functional form: $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X+\hat{\beta}_{2} X^{2}$.
* Characteristics of a parabolic curve:
* It is \mathbf{U}-shaped ('opening up') if $\beta_{2}>0$. It is \boldsymbol{n}-shaped ('opening down') if $\beta_{2}<0$.

Second-Degree Polynomial

* You might remember from high-school calculus the formula for a parabola: $y=a x^{2}+b x+c$
* A regression curve with the second-order polynomial of X has the same functional form: $\hat{Y}=\hat{\alpha}+\hat{\beta}_{1} X+\hat{\beta}_{2} X^{2}$.
* Characteristics of a parabolic curve:
* It is \mathbf{U}-shaped ('opening up') if $\beta_{2}>0$. It is \boldsymbol{n}-shaped ('opening down') if $\beta_{2}<0$.
* It has one bend, known as its vertex, given by $-\frac{\beta_{1}}{2 \beta_{2}}$
"Opening Down"
"Opening Up"

The coefficient of x^{2} determines whether the parabola opens up or down

Example

Example

* Does democracy increase or decrease trust in government?

Example

* Does democracy increase or decrease trust in government?

Example

* Does democracy increase or decrease trust in government?

* We gather data on Democracy (0-10 scale) from V-Dem, and on the average country-level Trust in Government ($1=$ none at all, $4=$ a great deal) from the World Values Survey (WVS).

Govt. Trust $=\alpha+\beta_{1}$ Democracy $+\epsilon$

Govt. Trust $=\alpha+\beta_{1}$ Democracy $+\epsilon$

Govt. Trust $=\alpha+\beta_{1}$ Democracy $+\epsilon$

Residuals of Govt. Trust ~ Democracy

Govt. Trust $=\alpha+\beta_{1}$ Democracy $+\beta_{2}$ Democracy $^{2}+\epsilon$

Govt. Trust $=\alpha+\beta_{1}$ Democracy $+\beta_{2}$ Democracy $^{2}+\epsilon$

Residuals of Govt. Trust ~ Democracy + Democracy-squared

Second-Degree Polynomial: Coefficients

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337 * * *$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Sign of β_{2} : if $\beta_{2}>0$, U-shaped curve, if $\beta_{2}<0, \mathrm{n}$-shaped curve.

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337^{* * *}$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Sign of β_{2} : if $\beta_{2}>0$, U-shaped curve, if $\beta_{2}<0, \mathrm{n}$-shaped curve.
* Significance of β_{2} : tests against the null that the relationship is linear.

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337^{* * *}$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Sign of β_{2} : if $\beta_{2}>0$, U-shaped curve, if $\beta_{2}<0, \mathrm{n}$-shaped curve.
* Significance of β_{2} : tests against the null that the relationship is linear.
* Vertex: $-\beta_{1} /\left(2 \beta_{2}\right)$. This is where sign of the relationship changes - may fall outside the observed range of X.

Dependent variable:
Govt. Trust (1-4)
Intercept 3.337*** (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337 * * *$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Usual interpretation of effect size doesn't work: "holding all else constant, a one-unit increase in X is associated with a β_{1} increase in Y."

Dependent variable:

Govt. Trust (1-4)

Intercept 3.337*** (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Usual interpretation of effect size doesn't work: "holding all else constant, a one-unit increase in X is associated with a β_{1} increase in Y."
* We can't hold all else constant. If we increase X, we also increase X^{2}.

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337 * * *$ (0.152)
Democracy $-0.508^{* * *}(0.076)$
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Usual interpretation of effect size doesn't work: "holding all else constant, a one-unit increase in X is associated with a β_{1} increase in Y."
* We can't hold all else constant. If we increase X, we also increase X^{2}.
* At each value X the predicted rate of change in Y varies.

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337 * * *$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

* Usual interpretation of effect size doesn't work: "holding all else constant, a one-unit increase in X is associated with a β_{1} increase in Y."
* We can't hold all else constant. If we increase X, we also increase X^{2}.
* At each value X the predicted rate of change in Y varies.
* Polynomial variable coefficients β_{1} and β_{2} mean little on their own, they must be interpreted together

Dependent variable:
Govt. Trust (1-4)
Intercept $3.337 * * *$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337 * * *$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

Dependent variable:
Govt. Trust (1-4)
Intercept 3.337*** (0.152)
Democracy $-0.508^{* * *}(0.076)$
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337^{* * *}$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

Rate of change if Democracy $=1$:

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337^{* * *}$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

Rate of change if Democracy $=1$:

$$
\text { * }-0.508+0.092 \times 1=-0.416
$$

Dependent variable:

Govt. Trust (1-4)

Intercept $3.337^{* * *}$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

Rate of change if Democracy $=1$:

$$
\text { * }-0.508+0.092 \times 1=-0.416
$$

* Rate of change in Democracy $=5$:

Dependent variable:
Govt. Trust (1-4)
Intercept $3.337^{* * *}$ (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

Rate of change if Democracy $=1$:

$$
\text { * }-0.508+0.092 \times 1=-0.416
$$

* Rate of change in Democracy $=5$:
* $-0.508+0.092 \times 5=-0.048$

Dependent variable:
Govt. Trust (1-4)
Intercept 3.337*** (0.152)
Democracy -0.508*** (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

Rate of change if Democracy $=1$:

$$
\text { * }-0.508+0.092 \times 1=-0.416
$$

* Rate of change in Democracy $=5$:
* $-0.508+0.092 \times 5=-0.048$
* Rate of change in Democracy $=8$:

Dependent variable:
Govt. Trust (1-4)
Intercept 3.337*** (0.152)
Democracy -0.508*** (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Second-Degree Polynomial: Coefficients

Instantaneous rate of change, expressed by the derivative. The derivative of $\hat{Y}=\alpha+\beta_{1} X+\beta_{2} X^{2}$ in X is $\beta_{1}+2 \beta_{2} X$.

In our model, $-0.508+0.092 \times$ Democracy

* Rate of change if Democracy =1:

$$
\text { * }-0.508+0.092 \times 1=-0.416
$$

* Rate of change in Democracy $=5$:

$$
\text { * }-0.508+0.092 \times 5=-0.048
$$

* Rate of change in Democracy $=8$:

$$
\text { * }-0.508+0.092 \times 8=+0.228 \text {, etc. }
$$

Dependent variable:
Govt. Trust (1-4)
Intercept 3.337*** (0.152)
Democracy $-0.508^{* * *}$ (0.076)
Democracy ${ }^{2}$ 0.046*** (0.008)

Polynomial Terms in R

$>$ model1 <- lm(conf_goverment ~ democracy + I(democracy^2), data $=$ qog)
> stargazer(model1, type = "text", single.row = TRUE)

Dependent variable:
conf_goverment

democracy	$-0.508^{* * *}(0.076)$
I(democracy2)	$0.046^{* * *}(0.008)$
Constant	$3.337^{* * *}(0.152)$

Observations

$$
76
$$

R2
0.417

Adjusted R2
0.401

Residual Std. Error
$0.366(\mathrm{df}=73)$
F Statistic 26.076*** $(\mathrm{df}=2 ; 73)$
Note:
${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$

Visualisation: Predicted Values Plot

Predicted Values of Country-Level Trust in Government (1-4)

Visualisation: Conditional Effect Plot

Conditional Effect of Democracy on
Trust in Government (Quadratic Model)

Check if you understand

* How does a leader's time in office affect spending in Chinese counties?

Dependent Variable: Annual Growth Rate of Expenditures Per Capita Explanatory Variables

(Time in office) ${ }^{2}$

Time in office

Annual growth rate of revenues per capita

Annual growth rate of subsidies per capita

Party Secretary Model
Coefficient (Standard Error)

$-0.3946^{* *}$	$-0.4860^{* *}$
(0.1728)	(0.2049)
$2.4793^{* *}$	$3.1624^{* *}$
(1.0212)	(1.2252)
$0.2493^{* * *}$	$0.2589^{* * *}$
(0.0142)	(0.0166)

(0.0092)

* Guo, G. (2009). China's local political budget cycles. American Journal of Political Science, 53(3), 621-632.

Higher-Order Polynomials

Higher-Order Polynomials

* You can add higher-order terms (X^{3}, X^{4}, etc.) to model more complex non-linearities. In general, a polynomial of order n corresponds to a curve with $n-1$ bends.

Higher-Order Polynomials

* You can add higher-order terms (X^{3}, X^{4}, etc.) to model more complex non-linearities. In general, a polynomial of order n corresponds to a curve with $n-1$ bends.
* You always want to include lower-order terms. E.g., if you want to have X^{3}, you should also have X^{2} and X.

Higher-Order Polynomials

* You can add higher-order terms (X^{3}, X^{4}, etc.) to model more complex non-linearities. In general, a polynomial of order n corresponds to a curve with $n-1$ bends.
* You always want to include lower-order terms. E.g., if you want to have X^{3}, you should also have X^{2} and X.
* If a quadratic term doesn't improve the model, it's unlikely a cubic term will do, and so on. In practice, it (almost) never makes sense to go beyond a cubic.

Higher-Order Polynomials

* You can add higher-order terms (X^{3}, X^{4}, etc.) to model more complex non-linearities. In general, a polynomial of order n corresponds to a curve with $n-1$ bends.
* You always want to include lower-order terms. E.g., if you want to have X^{3}, you should also have X^{2} and X.
* If a quadratic term doesn't improve the model, it's unlikely a cubic term will do, and so on. In practice, it (almost) never makes sense to go beyond a cubic.
* Interpretation gets trickier. Use visualisation tools to get a sense of what you're fitting.

Higher-Order Polynomials

Linear: t

Cubic: $\mathbf{t ヘ 3}^{\wedge}$

Quadratic: $\mathbf{t \wedge 2}^{\mathbf{2}}$

Quartic: t^4

Higher-Order Polynomials: Handle with Care

Higher-Order Polynomials: Handle with Care

CEA45 Archived

@WhiteHouseCEA45 • Follow
Replying to @WhiteHouseCEA45
To better visualize observed data, we also continually update a curve-fitting exercise to summarize COVID-19's observed trajectory. Particularly with irregular data, curve fitting can improve data visualization. As shown, IHME's mortality curves have matched the data fairly well.

[^0]
Higher-Order Polynomials: Handle with Care

Higher-Order Polynomials: Handle with Care

Covid Death Scatterplot With Linear and Cubic Trendlines

Log-Transformations

Log-Transformations

* Useful when dealing with variables that are positive and right-skewed:

Log-Transformations

* Useful when dealing with variables that are positive and right-skewed:
* Income: lots of people around the median income, and a handful of mega-rich.

Log-Transformations

* Useful when dealing with variables that are positive and right-skewed:
* Income: lots of people around the median income, and a handful of mega-rich.
* Population: 50% of countries below 10 m people $\left(10^{7}\right)$. Then there's China and India, with 1bn people $\left(10^{9}\right)$.

Log-Transformations

* Useful when dealing with variables that are positive and right-skewed:
* Income: lots of people around the median income, and a handful of mega-rich.
* Population: 50% of countries below 10 m people $\left(10^{7}\right)$. Then there's China and India, with 1bn people $\left(10^{9}\right)$.
* GDP per capita: 80% of countries below $\$ 50 \mathrm{k}$. Then, there's Luxembourg, Singapore and Qatar ($>\$ 125 k$).

Log-Transformations

* Useful when dealing with variables that are positive and right-skewed:
* Income: lots of people around the median income, and a handful of mega-rich.
* Population: 50% of countries below 10 m people $\left(10^{7}\right)$. Then there's China and India, with 1bn people $\left(10^{9}\right)$.
* GDP per capita: 80% of countries below $\$ 50 \mathrm{k}$. Then, there's Luxembourg, Singapore and Qatar (> \$125k).
* Linear relationships are unlikely with these variables as your predictors, outcomes or both.

Log-Transformations

Are Smaller Countries More Democratic?

Log-Transformations

Does Democracy Cause Development?

Log-Transformations

Are Smaller Countries Richer?

Log-Transformations

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:
* $\log (1)=0$

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:
* $\log (1)=0$
* $\log (10) \approx 2.30$

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:
* $\log (1)=0$
* $\log (10) \approx 2.30$
* $\log (100) \approx 4.60$

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:
* $\log (1)=0$
* $\log (10) \approx 2.30$
* $\log (100) \approx 4.60$
* $\log (1000) \approx 6.91$

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:
* $\log (1)=0$
* $\log (10) \approx 2.30$
* $\log (100) \approx 4.60$
* $\log (1000) \approx 6.91$
* $\log \left(10^{6}\right) \approx 13.82$

Log-Transformations

* We can unskew these variables by taking their natural logarithm (notated as $\mathbf{l o g}$, or $\mathbf{l n}$). Reminder:
* If $\log (a)=b$, then $e^{b}=a$, where $e \approx 2.71828$.
* How it works in practice:
* $\log (1)=0$
* $\log (10) \approx 2.30$
* $\log (100) \approx 4.60$
* $\log (1000) \approx 6.91$
* $\log \left(10^{6}\right) \approx 13.82$
* (Careful: you can't take logs of zero or negative numbers!)

Log-Transformations: Example

Log-Transformations: Example

* Famous paper: Acemoglu, D., Johnson, S., \& Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. American Economic Review, 91(5), 1369-1401.

Log-Transformations: Example

* Famous paper: Acemoglu, D., Johnson, S., \& Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. American Economic Review, 91(5), 1369-1401.
* Argument: Colonial powers set up extractive institutions in places where they faced high mortality rates (due to e.g. diseases). Where they can settle easily, they set up growthinducing institutions, like property rights. Long-run growth is thus related to initial conditions faced by settlers:

Log-Transformations: Example

* Famous paper: Acemoglu, D., Johnson, S., \& Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. American Economic Review, 91(5), 1369-1401.
* Argument: Colonial powers set up extractive institutions in places where they faced high mortality rates (due to e.g. diseases). Where they can settle easily, they set up growthinducing institutions, like property rights. Long-run growth is thus related to initial conditions faced by settlers:
* GDP in $1995=\alpha+\beta$ Settler Mortality $+\epsilon$

Log-Transformations: Example

GDP in $1995=\alpha+\beta$ Settler Mortality $+\epsilon$

Log-Transformations: Example

GDP in $1995=\alpha+\beta \log ($ Settler Mortality $)+\epsilon$
USA
SGP
HKG
CAN

Log-Transformations: Example

Log Coefficients: Interpretation

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β
* Level-Log model $Y=\alpha+\beta \log (X)+\epsilon$

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β
* Level-Log model $Y=\alpha+\beta \log (X)+\epsilon$
* 1% change in $X \rightarrow Y$ predicted to change by $(\beta / 100)$

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β
* Level-Log model $Y=\alpha+\beta \log (X)+\epsilon$
* 1% change in $X \rightarrow Y$ predicted to change by ($\beta / 100$)
* Log-Level model $\log (Y)=\alpha+\beta X+\epsilon$

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β
* Level-Log model $Y=\alpha+\beta \log (X)+\epsilon$
* 1% change in $X \rightarrow Y$ predicted to change by ($\beta / 100$)
* Log-Level model $\log (Y)=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100 \%$

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β
* Level-Log model $Y=\alpha+\beta \log (X)+\epsilon$
* 1% change in $X \rightarrow Y$ predicted to change by ($\beta / 100$)
* Log-Level model $\log (Y)=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100 \%$
* $\mathbf{L o g}$-Log model $\log (Y)=\alpha+\beta \log (X)+\epsilon$

Log Coefficients: Interpretation

* Interesting property of logarithms: can interpret the coefficients in terms of percentage change (an approximation, valid only for small increases).
* Level-Level model $Y=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by β
* Level-Log model $Y=\alpha+\beta \log (X)+\epsilon$
* 1% change in $X \rightarrow Y$ predicted to change by ($\beta / 100$)
* Log-Level model $\log (Y)=\alpha+\beta X+\epsilon$
* One-unit change in $X \rightarrow Y$ predicted to change by $\beta \times 100 \%$
* $\mathbf{L o g}$-Log model $\log (Y)=\alpha+\beta \log (X)+\epsilon$
* 1% change in $X \rightarrow Y$ changes by $\beta \%$

Log Coefficients: Interpretation

> model1 <- lm(log(gdp_per_capita) ~ log(settler_mortality), data = colonialism)
> stargazer(model1, type = "text", single.row = TRUE)

	Dependent variable:
	log(gdp_per_capita)
log(settler_mortality)	-0.570*** (0.078)
Constant	10.700*** (0.374)
Observations	64
R2	0.464
Adjusted R2	0.456
Residual Std. Error	0.773 ($d f=62$)
F Statistic	53.766*** ($\mathrm{df}=1 ; 62$)
Note:	p<0.1; **p<0.05; ***p<0

Wrap-Up: Non-Linearities

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:
* Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:
* Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
* Including higher-order terms comes with the risk of overfitting. Theory should inform model specification.

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:
* Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
* Including higher-order terms comes with the risk of overfitting. Theory should inform model specification.
* Log-transformation are used more narrowly:

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:
* Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
* Including higher-order terms comes with the risk of overfitting. Theory should inform model specification.
* Log-transformation are used more narrowly:
* Non-linearities produced by skewed, positive variables.

Wrap-Up: Non-Linearities

* Polynomial terms are a very flexible tool:
* Unlike logs, they can handle changes in effect direction over the range of the predictor, and negative values.
* Including higher-order terms comes with the risk of overfitting. Theory should inform model specification.
* Log-transformation are used more narrowly:
* Non-linearities produced by skewed, positive variables.
* Assume proportional relationships: halving X has approximately the same effect size on Y as doubling X.

Thank you for your kind attention!

Leonardo Carella
leonardo.carella@nuffield.ox.ac.uk

[^0]: 3:35 PM • May 5, 2020

