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Abstract

This paper derives and tests quantitative predictions for three indicators of intra-party compe-
tition under preferential-list proportional representation (PLPR) rules: the share of preference
votes of the first-ranked candidate (v1), the effective number of candidates (Nc), and the share
of preference votes of the last eligible candidate (vs). First, it presents a model where these
variables are functions of input quantities measurable at election time: the number of candidates
c, the number of seats won s and the maximum number of preference votes p. Then, it is shown
that these equations can be recast in terms of purely institutional quantities to predict average
expected values of v1, Nc and vs for any seat-winning list in a district. Given a district mag-
nitude M , a maximum number of preference votes allowed p and a parameter r which captures
the permissiveness of over-nomination rules, v1 is predicted to be (prM

11
8 )−

1
4 , Nc is predicted to

be (prM
11
8 )

3
8 and vs is predicted to be (prM

5
2 )−

1
4 . These relationships are tested on a diverse

sample of data from 31 PLPR elections in nine countries. The model’s predictions come remark-
ably close to describe the empirical relationship between the observations in the sample, and are
substantially less biased than those of existing models of intra-party competition. It is also shown
that the district-level model can predict average values of intra-party competition in a district
about as well as the seat-product model predicts analogous inter-party quantities. Implications
for further research on the intra-party dimension of electoral systems and institutional design are
discussed in the conclusion.
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1 Introduction

The seat-product model (SPM) represents a major achievement of the ‘Duvergerian agenda’, the scholarly

quest to identify regularities in the relationship between institutional features of electoral systems and po-

litical outcomes (Taagepera and Grofman, 1985; Taagepera and Shugart, 1993; Taagepera, 2007; Taagepera

and Sikk, 2010; Sikk and Taagepera, 2014; Li and Shugart, 2016; Shugart and Taagepera, 2017). Through

their career’s work, Rein Taagepera and Matthew Søberg Shugart – occasionally in collaboration with other

authors – have shown that key features of party systems (and the democratic political process more broadly)

can be derived deductively from a small set of quantities that characterise an electoral system: primarily,

district magnitude (M) and assembly size (S). These relationships between institutional input variables and

predicted average outcomes ‘in expectation’ are normally in the form of Y = Xk, an exponential functional

form more common to the laws of natural sciences than the linear expressions used in much of social science

modelling (Taagepera, 2008, pp. 52-70). For instance, the formula for the expected effective number of

parties NS in an assembly of size S elected from districts of mean magnitude M is NS = (MS)
1
6 and for the

expected fractional share of the first party σ1 it is σ1 = (MS)−
1
8 (Taagepera, 2007; Shugart and Taagepera,

2017).1 The accuracy of these equations in predicting empirical distributions of party system quantities

across repeated elections in large samples is not only substantively interesting for the comparative study of

electoral institutions, insofar as they offer a guide as to the expected effects of electoral system reform, but

also a testimony to the potential of the theory-building method behind their derivation: logical modelling.

This paper follows in this line of theoretical reasoning, investigating whether features of intra-party

competition follow predictable patterns similar to those identified by the seat-product model for inter-party

competition. Specifically, it proposes a quantitatively predictive logical model of intra-party competition

in preferential-list proportional representation (PLPR) systems, the most common category of preferential

voting system. PLPR is defined as an electoral system with the following characteristics: (1) voters can or

must cast a personal vote for a candidate within a list of co-partisans, (2) the number of candidates elected

in each list is determined by the pooled number votes cast at list level, and (3) the attribution of seats to

candidates within a list is determined, at least in part, by personal votes (Karvonen, 2004; Shugart, 2005;

Passarelli, 2020).

Three quantities of interest that characterise the intra-party distribution of preference votes for a (seat-

1I use σ1 to notate the fractional share of the largest party, whereas this is generally indicated as s1, to avoid confusion
with s (the ‘raw’ number of seats won by a list, which is central to the model developed in the rest of the paper) and S (the
assembly size, which is a key component of the seat-product model).
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winning) list competing under preferential-list rules are examined:

— The share of preference votes obtained by the first candidate in a list (v1): this is simply the number

of votes of the first candidate over the total number of preferences cast for the party in that district.

The lower this value, the more competitive the list.

— The effective number of candidates (Nc): this is the intra-party analogue of the inter-party notion of

‘effective number of parties’ (Laakso and Taagepera, 1979), a measure of competition where the count

of parties is weighted by their fractional share.2 In a list with c candidates, Nc is 1∑c
1(v1

2+v22+...vc2)
,

i.e. the inverse of the sum of squares of candidate shares. The higher this value, the more competitive

the list.

— The share of preference votes obtained by the last eligible candidate (vs): for a list winning s seats in

a district, it is the share of preferences gained by the sth candidate.3 While a higher value of vs is

not prima facie an indicator of lower (or higher) competitiveness, the quantity may be of substantive

and practical interests for two reasons: in pure open-list PR (OLPR), where only preference votes

matter to candidates’ election, it identifies the minimum share a candidate must get to win a seat in

expectation; in flexible-list PR (FLPR), where threshold constraints apply, it indicates how ‘low’ the

legal threshold should be for the list to function as fully open.

The paper proceeds as follows. In section 2, I illustrate the derivation of the basic building block of the

existing models of intra-party competition quantities (the Shugart-Bergman-Watt model): the formula for

the expected value of first-ranked candidate’s preference share (v1). I then proceed to propose a refinement

of this simple model that extends its scope conditions to systems where voters may express more than one

preference vote and incorporates an intuitive, but previously overlooked, assumption about the relationship

between intra-party competitiveness of a list and actors’ expectations of the list’s inter-party performance.

In section 3, I argue that, from v1, it is possible to compute two additional quantities of interest: the effective

number of candidates (Nc) and the preference shares for the last eligible candidate in a list (vs). Tractable

approximations of the equations for these quantities are provided. The resulting models provide ‘predictions’

specific to each seat-winning list, but rely on two input quantities that are realised at election time – the

number of candidates in the list c and the number of seats won by the list s – and therefore are not, strictly

2To my knowledge, the first to compute effective number of candidates in a PLPR system was Arter (2013).
3I refer to this quantity in terms of ‘last eligible’ rather than ‘last elected’ because the model aims to apply to all types of

PLPR, including flexible-list systems. In this sub-type of PLPR, there is a threshold of preference votes that candidates must
meet to be elected on their preference votes, otherwise the allocation of seats defaults to the candidates’ position on the list.
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speaking, pre-dictive. To address this shortcoming, I proceed to show that these equations can be recast

in terms of purely institutional input variables, which vary at district level. I therefore derive two separate

models for each of the three quantities of interest (v1, Nc and vs): (1) a list-level ‘post-result’ equation, which

returns different values for each list in the same district, and (2) a district-level ‘results-blind’ prediction,

which relies uniquely on institutional variables and predicts the value of the quantity in expectation for

any list in a district. These sets of predictive equations are tested empirically on a sample of open- and

flexible-list electoral outcomes, for a total of over 2,600 seat-winning lists. Section 4 describes the data and

the institutional characteristics of the countries in the sample. Section 5 outlines the empirical modelling

choices, and motivates the indicators chosen to compare and assess model fits. Section 6 presents the results;

the performance of the models’ estimates and predictions is compared, in turn, with that of existing models

of intra-party competition and with that of the more established predictions of inter-party quantities of the

seat-product model. I conclude in section 7 highlighting implications and limitations of the analysis.

2 Modelling First-ranked Candidate Preference Shares

2.1 The Shugart-Bergman-Watt (Shugart-Bergman-Watt (SBW)) Model

Applications of the logical modelling approach to intra-party competition under preferential voting rules

have already been attempted, most notably in a paper by Shugart, Bergman and Watt (2013), henceforth

SBW, in the context of a comparison between open-list and single non-transferable vote systems (a slightly

modified version is in Shugart and Taagepera, 2017, 215-235). The basic building block of the SBW model

is the formula for the fractional share of preference votes for the first-ranked4 candidate of a seat-winning

list. An appealing feature of this model is its parsimony: in its simplest form, the SBW models employs

only one input variable, c, the number of candidates in a list. However, the deriving predictions fall well

short of the accuracy of those available for the inter-party dimension, and to improve accuracy SBW often

have to rely on constants derived empirically that correct the equations for biases that cannot be accounted

for theoretically. Moreover, these models’ scope has so far been limited to a relatively narrow set of ‘simple’

preferential voting systems, which exclude flexible list types or systems that allow multiple preference votes.

The wager of this paper is that we can do better at relatively little cost in terms of simplicity.

It is however worth revisiting the derivation of v1 in the SBW model, as an illustration of how logical

4I used the term ‘rank’ to refer to the ordering of candidates according to their preference votes, and ‘position’ to denote
their order on the ballot paper.
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model-building proceeds. The first step consists in identifying the conceptual boundaries of the quantity of

interest. At one extreme, v1 may not exceed 1: at best, the first-placed candidate can get all the preference

votes cast for a given list. As for the lower bound, v1 may not be lower than 1
c : this is the case where all

candidates in the list get the same share of votes, so that the list is maximally competitive. A candidate

getting less than 1
c cannot logically come first in the list. The expectation for v1 lies between these two

bounds and can be approximated as an average of the two. In line with the rest of the literature on logical

models of electoral system quantities, the geometric mean is preferred to the arithmetic mean,5 so that

v1 =
(

1 × 1

c

) 1
2

= c−
1
2 (1)

That is, the predicted fractional share for the first candidate in a list with c candidates is the inverse of

the square root of c.

2.2 The Revised Model

This SBW model is indeed the ‘best guess’ for v1, when this quantity is hypothesised to depend uniquely on

c. Moreover, it is derived from ‘hard’ conceptual boundaries, which are impossible for v1 to cross. Let us now

relax these conditions by considering the role of two additional input variables: the number of preference

votes and the expected number of seats at stake. Essentially, this new version of the model attempts to

incorporate two intuitions in the derivation of v1:

– The competitiveness of a list should increase in the number of preference votes that each voter can

cast. Thus v1 should decrease as voters are allowed to express more preferences (provided that they

are non-cumulative).

– The competitiveness of a list should increase in the expectation of the number of seats attributed to

each list. Thus v1 should decrease as lists are expected to elect more candidates.

To model these assumptions, we proceed by replacing the hard conceptual bounds in equation 1 with some

5Logical models effectively approximate the median value of a quantity, returning predictions that are in expectation
equally likely to be below or above its actual value. Geometric means between conceptually extreme cases express the median
of distributions better than arithmetic means when the variable of interest can only take positive values, and therefore a normal
distribution cannot be assumed. In particular, the geometric mean is preferable when the assumed distribution of a variable
spans different orders of magnitude, as it abides by the principle of equal distortion: when we have no priors over two extreme
possible values xmax and xmin, a ‘best guess’ that is equally likely to be above or below the true value is that both are off by

the same multiplicative factor k, so that x∗ = (xmax × xmin)
1
2 . In the specific case of the coarse model for v1, the arithmetic

mean of conceptual boundaries would predict a first-ranked candidate share of 0.5 in the limit for increasing values of c which
is an implausible degree of concentration for an extremely high number of candidates. For more details on the use of geometric
means in logical models see Taagepera (2008, pp. 120–124).
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‘soft’ upper and lower bounds, beyond which the quantity is unlikely to lie due to the expected effect of the

additional input variables. Because these new boundaries are themselves derived from the geometric mean of

conceptual bounds, the revised model will therefore be expressed in terms of ‘predictions from predictions’.

2.2.1 The Number of Preference Votes (p)

Many preferential-list systems allow voters to express one or more non-transferable and non-cumulative6

preferences for different candidates: this is the case in a few open-list (Cyprus, Greece, Italy, Kosovo, Peru,

Sri Lanka) and many flexible-list systems (Belgium, Bosnia, Czechia, Slovakia). This factor is important

because the number of preferential votes at voters’ disposal can be expected to compress the upper bound on the

share of preference for the first party. For instance, consider a case where voters must cast two preferences.

Even if a candidate gets a vote from all electors, her share of preference votes will not cross 1
2 , as voters’

second preference is spread across the other candidates in the list. To my knowledge, no preferential voting

system employed for a parliamentary election requires voters to cast more than one preference vote; however,

many allow such an option. In this case, the ‘hard’ upper bound for v1 in a system where voters may cast

from 1 to p preference votes is still 1: the scenario where all voters cast one preference and they all go to one

candidate. But we may identify a more realistic – or at least, more useful – ‘soft’ upper bound by positing

that, in such a system, voters will cast a number of preferential votes comprised between 1 and p. If all

voters cast one vote, then the maximum fractional share the first-ranked candidate can obtain is still 1; if

all voters cast p votes, then it is 1
p . Taking the geometric mean of these boundaries, therefore our ‘soft’

upper bound for v1 is 1

p
1
2

, or p−
1
2 , where p is the maximum number of preference votes at voters’ disposal.

Of course, the logical standing of this boundary condition is only as good as our assumption of the number

of preference votes cast by each voter: if they cast more, it should be lower; if they cast fewer, it should

be higher. In this sense, it is a ‘prediction from prediction’, rather than a conclusion from pure deductive

reasoning.

2.2.2 Expectations of Inter-party Performance

The second modification of the SBW model attempts to model the assumption that intra-party competition

in a list is endogenous to actors’ expectation of the list’s inter-party performance. In other words, assuming

that vote-seeking is costly, the more seats are expected to be assigned to a list, the more candidates will be

6There are rare cases that allow voters to express multiple preferences for the same candidate, such as in Switzerland,
Luxembourg, and Hamburg’s and Bremen’s State Parliament electoral systems. Because non-cumulability of the vote is a
crucial assumption at this stage, such preferential-list systems fall outside of the scope conditions of the model.
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serious about seeking preference votes.7 In a way, this assumption simply maps Duverger’s intuition onto

intra-party competition: just as the number of electorally competitive parties decreases with the district

magnitude M , the number of electorally competitive candidates decreases in the expectation of the number

of seats at stake s.

Figure 1: Preference votes in the Bielsko-Bia la constituency (2019 Polish parliamentary election).

This point is perhaps best illustrated by peeking (temporarily) behind the veil of ignorance-based theoris-

ing and into real-world results. Figure 1 shows the distribution of preference votes for the three seat-winning

parties competing in the Bielsko-Bia la (Nr. 27) constituency in the 2019 Polish parliamentary election.8

The first thing to note from a glance at the plot is that most candidates for all parties get close to zero

percent of preference votes (not an uncommon pattern: see, for instance, Cheibub and Sin, 2020). Most

names appearing on the ballot are effectively ‘list fodder’ or ‘top-up candidates’ (Arter, 2013), with little

personal support or hope for election. This observation suggests that c, the key variable in the SBW model,

can be a very volatile and imprecise predictor of intra-party competition: if the parties had only fielded 9

7Another way of thinking about this is from voters’ perspective: the more seats are expected to be assigned to a list, the
less voters will be concerned about wasting their preference on non-viable candidates.

8 It can be shown empirically that v1 is significantly lower for more successful seat-winning parties, discounting all district-
level variation through fixed effects. See Appendix section A.
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candidates instead of 18, the SBW model’s prediction would change dramatically (the upper bound would

double and v1 would increase by a factor of
√

2), whereas in fact the last-placed 9 candidates account for

only 10% of each party’s total share of preference votes.

Secondly, the plot shows that the list that came on top in the district – the right-wing Prawo i Spraw-

iedliwość (PiS), which won five seats – has a lower first-candidate preference share of the vote and a flatter

distribution of the vote than the other two, the liberal Koalicja Obywatelska (KO) and the left-wing Lewica

Demokraticzna (Lewica). This observation is consistent with the idea that the number of electorally compet-

itive candidates behaves with respects to the expectations of a list’s performance in a similar way to how the

number of electorally competitive parties behaves with respects to the district magnitude: the fewer spots

available, the fewer serious contenders. (And, in turn: the fewer serious contenders, the more concentrated

preferential votes will be towards the top-end of the candidate ranking.)

This intuition is perhaps the main innovative aspect of this paper – though Crisp, Jensen and Shomer

(2007) made a similar observation – but its formalisation requires something of a leap of faith. How to

model the effect of seat expectations on intra-party competition? My proposal is to introduce the concept

of ‘number of pertinent vote-earning candidates’ c∗ as a substitute for c, in order to formalise the idea that

using simply the list length c will fail to differentiate how lists with higher or lower seat-winning potential

will have different levels of internal competitiveness. Conceptually, c∗ is an analogue of Nv0 , the number of

pertinent vote-earning parties in a district (Shugart and Taagepera, 2017, p. 128): a quantity that denotes

“how many [parties] are sufficiently important to contribute to our prediction.” In the same way, c∗ is a

‘phantom quantity’: it does not refer to an observable, but it helps to derive one, because it incorporates

the idea that fewer candidates will seriously compete for votes when fewer seats are expected to be a stake.

In this sense, a list will be de facto shorter when candidates expect there to be few seats at stake, and de

facto longer when candidates are competing for more spots. Moreover, c∗ is distinct from, say, the effective

number of candidates, because we are not mainly interested in the size of their preference vote share: holding

c constant, a candidate getting 1% of preference votes may be hopeless in a list competing for one seat, but

has a realistic shot at a seat in a list competing for 15 spots in parliament.

Because expectations are crucial to these theoretical steps, the conceptual boundaries of the number

pertinent vote-earning candidates c∗ are identified in terms of actors’ ability to infer list performance. On

the one hand, candidates may be entirely in the dark about their electoral potential and the realistic number

of seats allocated to their list. In this case, they all vie for votes, so that c∗ = c, as in the SBW model. At the
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other extreme, candidates may have perfect foresight about election results and their vote-winning potential,

so that only the candidates who expect to end up in seat-eligible spots in the final rank order campaign and

vie for votes.9 In this case, where actors are perfectly efficient in choosing their level of campaign effort and

have perfect priors over the number of seats the party will win, c∗ = s, where s notates the number of seats

won by the party in the district. Hence the expected number of pertinent vote-earning candidates in a list

of size c gaining s seats can be computed as the geometric mean of s and c: c∗ = (sc)
1
2 .10 It follows that

the revised lower bound for v1 is the inverse of c∗: considering only pertinent vote-earning candidates, at its

lowest v1 takes the value of 1
c∗ = (sc)−

1
2 , when all the ‘serious’ candidates get the same share of the vote.

2.2.3 Bringing It All Together

Substituting the soft upper bound p−
1
2 and the soft lower bound (sc)−

1
2 into equation 1, we may therefore

derive the revised prediction for the value of v1:

v1 =
( 1

(sc)
1
2

× 1

p
1
2

) 1
2

= (scp)−
1
4 (2)

To recapitulate, equation 2 expresses that the fractional share of preference votes obtained by the first-

ranked candidate v1 is comprised between these two bounds:

— The candidate’s share under the least-competitive scenario, where the the first candidate gets one

preference from all voters, and voters on average cast p
1
2 preferences each, with p being the maximum

number allowed. For instance for p = 2, 100 voters can be expected to cast a total of approximately

141 votes, so that the upper bound for v1 is 100/141 ≈ 0.71 or equivalently 1

2
1
2
≈ 0.71.

— The candidate’s share under the most-competitive scenario, where all pertinent vote-earning candi-

9It is not unrealistic that candidates have decent priors over their list’s inter-party competitiveness; as Shugart and Taagepera
(1989, p. 215) put it, “in a multi-seat district with a fairly stable voting pattern, the number of seats one particular party can
obtain is known ahead of time within plus or minus one seat.” Furthermore, candidates may have decent ex ante information
about their own vote-winning potential as well, as their ballot position is strongly (and, in part, causally) associated with their
chances (Lutz, 2010; Blom-Hansen et al., 2016; Devroe and Wauters, 2020; Van Erkel and Thijssen, 2016).

10 To be exact, the model uses s, the observed number of seats won, as a proxy for E(s), the unobservable number of seats
actors in a list expect to win. This requires us to restrict the analysis to ‘seat-winning’ parties, discounting unsuccessful lists,
where s is zero. c∗ may be adjusted to be [(s+1)× c]1/2 – i.e. assuming that lists are at least marginally over-optimistic about
their potential, otherwise they would not compete – to predict preference shares of non-seat-winning parties as well. A similar
adjustment is proposed by Selb and Lutz (2015, p. 332): “we rely on the assumption that candidates’ expectations are correct
on average, and use the actual number of seats won by the candidates’ list in the current election as a proxy for the expected
number of seats. Moreover, to avoid substantial losses of observations due to zero divisions for all the lists that did not gain
any seats, we will add one seat to the denominator [...] which implements the reasoning that any list which stands for election
does so because its members expect at least one seat.” However, to avoid the complication of introducing a further constant,
the main model retains the simpler formula, and keeps the focus on seat-winning parties for reason of substantive interest and
in line with previous theoretical work. Appendix section B.1 reproduces the analysis in section 6.1 with predictions based on a
lower bound for c∗ set to be [c(s+ 1)]1/2 (on the same sample of seat-winning lists used the main analysis).
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dates, a quantity endogenous to the ‘length’ of a list and its expected performance, get the same

number of votes each. For instance, in a list with 25 candidates expected to gain 6 seats, the number

of pertinent vote-earning candidates is (25 × 6)
1
2 ≈ 12.25, and minimum value of v1 is 1

12.25 ≈ 0.08.

Thus, in this example, our best guess for v1 in a list with 25 candidates winning 6 seats under PLPR

rules allowing a maximum of 2 preference votes is (2−
1
2 × (25 × 6)−

1
2 )

1
2 ≈ (0.71 × 0.08)

1
2 ≈ 0.24. Note that,

because s ≥ 1 (the scope conditions are limited to seat-winning parties) and c ≥ p (voters cannot cast more

votes than there are candidates), it follows that (sc)−
1
2 ≤ p−

1
2 : the ‘soft’ upper bound may not logically be

lower than the ‘soft’ lower bound.

2.2.4 Unmodelled Variables

Although a three-variable model is perhaps already complex enough to test Taagepera and colleagues’ in-

junction to make logical models “as simple as possible, but no simpler” (Taagepera, Selb and Grofman, 2014,

pp. 396-397, attributed to Albert Einstein), it obviously does not exhaust all possible sources of variation

in intra-party competitiveness. Ultimately, whether and how well one can really predict average values of v1

from variation in s, c and p is an empirical question. But it is worth briefly mentioning what has been left

out of the picture.

First, the model makes no reference to the type of PLPR it applies to, the relevant distinction here

being between open and flexible lists. While in the former all candidates are elected according to the order

of preferences received, the latter require candidates to reach some preference threshold to be elected via

preferences, while the rest of the seats are filled according to the party list position. In short, we simply have

no directional prior as to how list type should matter, let alone a way to quantify such an effect. On the one

hand, a flexible list system may decrease first-candidate vote share, if candidates listed in higher positions

put less effort in attracting preferential votes, knowing they are likely to be elected regardless. On the

other hand, a flexible list system might make the distribution of votes steeper, dissuading lower-positioned

candidates from vying for votes, as those may be insufficient to clear the threshold.11 Secondly, the model

does not distinguish between contexts where preferential vote is mandatory and those where it is optional.

Once again, there is no clear directional prior as to the effect of this variable, and effectively we should

take a leap of faith and assume that the model predictions will apply on average across a sample of diverse

11It is however worth noting that, as flexible-list systems normally allow multiple preference votes, having included p as an
input variable makes it more realistic that the scope conditions can be extended beyond simple open-list PR. The empirical
analysis in section 6.1 includes separate tests of the models for open- and flexible-list elections.
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institutional contexts. Factors falling outside the realm of electoral institutions – larger parties may be more

factionalist, smaller parties may have fewer qualified candidates, outcomes are more easily predictable in

stable party systems – are also beyond the reach and remit of a logical model.

3 Extending the Intra-party Model

This section develops the fundamental building block of the model, the equation v1 = (scp)−
1
4 , in two

directions:

— In subsection 3.1, it is shown that two additional quantities of interest describing the degree of intra-

party competitiveness of a list can be derived from v1: the effective number of candidates (Nc) and the

vote share for the last eligible candidate (vs). First, I show how these quantities can be computed via

an algorithmic iteration of the same procedure used to derive v1 that derives predictions for preference

shares for all candidates in a list. Then, I propose some approximations for these quantities that retain

the simple Xk structure of the formula for v1.

— In subsection 3.2, I recast the formula for v1 – and the related equations for Nc and vs – in terms

of variables that are purely institutional, and can be gathered independently of outcomes realised on

election day. This yields a ‘results-blind’, institutions-only model that makes predictions for average

expected values of these quantities at district level, as opposed to the list-level prediction of the model

in terms of s, c and p.

3.1 Deriving Nc and vs

3.1.1 Algorithmic Approach

Just as we did with v1, we may use the same process of individuating conceptual boundaries and taking

their geometric mean to derive predictions for the values of v2, v3, v4...vc. These values would allow to derive

Nc and vs from the distribution of expected preference vote shares for all candidates. As we will see, this

is algebraically messy. However, it is worth outlining how we may obtain these quantities with an iterative

algorithm, as these predictions can serve as ‘sanity checks’ for the more synthetic approximations of Nc and

vs described in the rest of this section.

Let us start from v2: the fractional share of preferential votes for the second-ranked candidate. Once v1

is derived, we may use an analogous logic to derive the vote share of the second elected candidate, v2. We

11



must, however, distinguish two cases.

• Case 1 v1 ≤ 0.5

If the first-ranked candidate gets less than half of the preference votes, the upper bound for v2 is v1: the

second candidate may not get more votes than the first candidate. The lower bound corresponds to the case

where all the remaining pertinent vote-earning candidates get an equal share of the remaining vote share

once v1 is realised. The lower bound for v2 is therefore 1−v1

(s×(c−1))
1
2

. The geometric mean of lower and upper

bounds is the expected share of votes for the second candidate elected:

v2 =
(
v1 ×

1 − v1

(s× (c− 1))
1
2

) 1
2

(3)

• Case 2 v1 > 0.5

We must however consider the case in which the first candidate gets more than half of the preference

votes. Such circumstance makes it illogical to posit v1 as the upper bound for the second candidate: the

second candidate’s share never be as much, as the sum of first and second candidate shares would exceed 1.

In this case, we must substitute in equation 3 the actual upper bound, which will be 1 − v1:

v2 =
(

(1 − v1) × 1 − v1

(s× (c− 1))
1
2

) 1
2

=
1 − v1

(s× (c− 1))
1
4

(4)

Equations 3 and 4 can be generalised to the nth candidate, whose share vn is the geometric mean between

the following two conceptual bounds:

— the upper bound is whichever is smaller of vn−1 (the share of the (n−1)th candidate) and 1−
∑n−1

i=1 vi

(the remaining share of the vote after vn−1 is realised). That is, the share of the vote for the nth

candidate is subject to the conditions that it cannot be greater than the share of the vote of the

candidate placed above her and it cannot tip the total of preference shares above 1.

— the lower bound is
1−

∑n−1
i=1 vi

(s(c+1−n))1/2
, i.e. 1 minus the sum of v1, v2, v3...vn−1 over the number of pertinent

vote-earning candidates (s(c + 1 − n))
1
2 , where c is reduced by one each time one candidate share

is realised. That is, the share of the vote for the nth candidate is smallest when she gets the same

preference votes as all the pertinent vote-earning candidates placed below her.12

12To compute values for candidates beyond c∗ and allow the sum of all the fractional shares to converge to 1 in the limit, we
need to hold s constant rather than using (s+ 1− n) as we did with c. In this way, the number of candidates that are relevant
to compute for second, third, fourth etc. place is reduced at each iteration – because the list gets shorter once each fractional
share is realised – but never falls below zero.
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The generalised algorithm to compute vn (2 ≤ n ≤ c) is therefore as follows:

vn =
(
min{vn−1, 1 −

n−1∑
i=1

vi} ×
1 −

∑n−1
i=1 vi

(s(c + 1 − n))1/2

) 1
2

(5)

3.1.2 An Approximation of Nc

Having derived v1, v2, v3...vc with the algorithm in equation 5, we may therefore compute the effective

number of candidates Nc from its definition as Nc ≡ 1∑c
1(vi

2) . This obviously does not simplify to a neat,

generalisable expression in the form of Xk, or at least not one with a tractable value of the base. We may

therefore attempt to use a shortcut to derive Nc from approximated conceptual boundaries expressed in

terms of v1. To distinguish this ‘approximated’ prediction for Nc from the value of the effective number of

candidates obtained from iterating the algorithm in equation 5, I temporarily note the approximation as N̂c,

with a hat.

The value of the effective number of candidates Nc is at its greatest when all candidates share the

remaining share of the vote after v1 is realised equally. For a sufficiently large value of c, these small

shares, corresponding to 1−v1
c−1 each, will become negligible when squared. Hence, the upper bound can be

approximated as 1
v1

2+02+02... = 1
v12 . The lower bound for v1 corresponds to the case where the distribution

of the vote is as ‘compact’ as possible: because the maximum a candidate can get is v1, there will be

1
v1

candidates getting v1 share of the vote each. It follows that the lower bound will be approximately

1
1
v1

×v2
1

= 1
v1

.13 Taking the geometric means of these conceptual bounds and substituting our v1 equivalence

from equation 2, we obtain the following approximation:

N̂c =
( 1

v1
× 1

v12

) 1
2

= v1
− 3

2 = (scp)
3
8 (6)

It can be shown graphically that this estimation approximates quite well the value of the effective number

of candidates Nc computed via algorithmic iteration, at least for realistic values of s, c and p. I simulated

data with all combinations of c comprised between 5 and 40, s comprised between 1 and 20, and p comprised

between 1 and 6. After removing the ‘illogical’ cases where s > c or p > c, I computed Nc with the algorithmic

method for all combinations of values and N̂c with the approximation in equation 6. The graph on the left

in figure 2 shows how the two estimates compare. Fitting a fixed-intercept linear regression (Y = βX)

returns a linear relationship between the two corresponding to Nc = 1.05(N̂c), which is reasonably close

13A similar procedure to approximate the effective number of parties is in Taagepera and Shugart (1993).
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Figure 2: Comparison of Nc estimates.

to the expected identity Nc = N̂c. The graph on the right in figure 2 shows the relationship between the

‘raw’ measure of the scp product and the algorithmic estimation of the effective number of candidates Nc.

Modelling the relationship as a fixed exponent regression (Y = Xβ) returns the function Nc = scp0.382,

which again is closely in line with our approximation N̂c = scp
3
8 . To be sure, this does not mean the

approximation for the effective number of candidates is ‘true’: it simply means that it is consistent with

the generative process assumed to be behind the estimation of v1 and extended via algorithmic iteration to

vn | n ≥ 2.

3.1.3 An Approximation of vs

A free-standing, empirically useful formula for vs has remained elusive to logical modellers, to the extent

that the two existing attempts at deriving this quantity (Shugart, Bergman and Watt, 2013; Shugart and

Taagepera, 2017, pp. 226-235) ultimately recur to empirically derived constants to adjust the models. In

this section, I propose a new approach to derive a ‘shortcut’ approximation for vs. The method proposed is

somewhat more convoluted than the approximation of Nc and involves something of a mathematical sleight of

hand in positing the mean and median of a quantity to be approximately equal in expectation. Nonetheless,

as it will be shown, the deriving formula, when expressed in purely institutional terms without empirical

14



input, performs respectably well on both simulated and real-world data.

Let us start by considering the expected share for a seat-eligible candidate, vi≤s. We can estimate such

a quantity as a function of v1 (in expectation) in two ways: either as the expected median of preference

shares of seat-eligible candidates (notated with a tilde ṽi≤s) or as the expected mean of preference shares of

seat-eligible candidates (notated with a bar v̄i≤s). First, relying on Taagepera’s argument that the geometric

mean of conceptual bounds approximates a median, we can derive the expected median preference vote for

a seat-eligible candidate ṽi≤s as a quantity comprised between v1 and vs, and therefore ṽi≤s = (v1 × vs)
1
2 .

Let us now repeat the conceptual boundaries logic for the mean preference share for a seat-eligible candidate

v̄i≤s, starting from a computation of upper and lower bounds for the mean as functions of the realised value

of v1. The mean preference share is at its highest when s = 1, the list only wins one seat and the mean is v1:

hence, (1 × c× p)−
1
4 is the upper bound. The lower bound is realised when all candidates after v1 up to vs

get as few preference shares as possible: for values of c sufficiently larger than s, the value of each individual

one of these 1−v1
c−1 shares will tend to zero, so that the expected mean preference vote will be approximately

v1

s . We can thus proceed to derive the mean preference vote of seat-eligible candidates in expectation as

v̄i≤s = ((cp)−
1
4 × v1

s )
1
2 .

An approximation for vs, notated as v̂s, can be derived algebraically by positing that the median (ṽi≤s)

and mean (v̄i≤s) share of a seat-eligible candidate’s preference votes are approximately equal:

ṽi≤s ≈ v̄i≤s

(v1 × vs)
1
2 ≈

(
(cp)−

1
4 × v1

s

) 1
2

vs ≈
(cp)−

1
4

s

v̂s = (s4cp)−
1
4

(7)

Let us now repeat the same ‘sanity checks’ for v̂s as we did for N̂c (graphically, in figure 3). Regressing

the algorithmically derived value of the share for the last eligible candidate vs on the approximation v̂s

obtained from equation 7, we obtain vs = 0.975v̂s, which is close to an identity. The exponential function

linking vs to s4cp is vs = (s4cp)−0.247, which is close to the the approximation’s prediction v̂s = (s4cp)−
1
4 .

Even so, the theoretical derivation of this approximation is admittedly not as rigorous or satisfying as we

would wish, as it relies on the assumption that two quantities that we know to be distinct are approximately

15



Figure 3: Comparison of vs estimates.

equal. In particular, the comparability of the two measures of central tendency may be limited when parties

gain many seats, and thus the distribution of preferences for seat-eligible candidates becomes more skewed.

There are hints of this bias in figure 3, which suggests that for very high values of the base product (low

values of vs), the approximation somewhat over-estimates the quantity relative to the algorithm’s prediction.

3.2 Predicting v1, Nc and vs from Institutional Variables

The equations v1 = (scp)−
1
4 , Nc = (scp)

3
8 and vs = (s4cp)−

1
4 are ‘list-level’ models insofar as they predict

different values for observations in the same district, varying from list to list as a function of their different

values of s and c (conversely, p is constant in a district).14 However, as s and c are only realised at election

time, these models do not fully qualify as pre-dictive: they can only yield predictions after candidate lists

are presented by parties and inter-party seat allocation is realised. To be of use to institutional engineers,

we need to recast these models in terms of average expected indicators of intra-party competitiveness that

vary as a function of variables that pre-exist the selection and election of candidates. In particular, as it

will be argued shortly, both s and c can be expressed as some function of the district magnitude. In doing

14I henceforth refer to N̂c and v̂s, the approximations of the quantities, simply as Nc and vs, as the algorithm-based prediction
for these quantities are not relevant to the rest of the analysis.
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so, the models will shift from the list level to the district level: if we do not know the exact values of c and

s for each list, we may only express these quantities in terms of their expected value for any seat-winning

list in a district. In practice, this is the same as deriving the value of a quantity for the expected median

seat-winning party, as this prediction would thus be equally likely to fall below or above the real quantity

for any party.

First, let us consider how c is related to electoral institutions. How many candidates can a seat-winning

list be expected to field in a district where M seats are at stake? Here we need to make a further assumption

based on observed empirical regularities: lists nominate as many candidates as they are legally allowed to.

This is because, unlike under STV and SNTV, preferential-list systems pool individual candidates’ votes

into list totals, which in turn determine the inter-party allocation of seats. Thus, the returns to additional

candidate nominations are always positive for parties, as there is no risk of ‘wasting’ votes through over-

nomination error (Shugart, Bergman and Watt, 2013; André, Depauw and Deschouwer, 2014). Legal limits

to the number of candidates vary from electoral system to electoral system. In countries like Italy, Cyprus

and Belgium, the number of candidates in a party-list is capped to the number of seats at stake in a district,

so that c = M . Elsewhere, they might nominate up to M + 2 (Estonia) or 2M (Poland). Therefore, in

general, c = rM , where r is the ratio between the maximum number of candidates allowed and the district

magnitude, varying at district level. Having assumed that seat-winning lists always over-nominate, our

‘over-nomination ratio’ parameter r is thus a purely institutional measure, albeit one that is often hidden in

obscure electoral regulations.15

Secondly, let us consider how s may be expressed as a function of institutional quantities. In this case,

we once again employ the prediction-from-prediction approach to derive the average (in this case, median)

expected number of seat for any seat-winning party in terms of M . The work of Taagepera and Shugart

(1993) shows that the number of seat-winning parties N ′
0 in a district is M

1
2 : the geometric mean between

the minimum of 1 and the maximum of M . From here, they derive the fractional share of seats σ′
1 won by

the largest party in a district as the geometric mean between the maximum of 1 and the minimum of 1
N ′

0
,

returning σ′
1 = M− 1

4 . The expected number of seats won by the largest party is therefore M × σ′
1 = M

3
4 .16

15This assumption holds up well empirically for most seat-winning parties (see section 4). Very small lists may be short
of personnel and thus be forced to under-nominate; but as our focus is on seat-winning parties, these lists are unlikely to be
relevant. A thornier problem is represented by countries with particularly complex over-nomination rules. For instance, in
Brazil, each individual party in a coalition list may nominate up to M candidates. This means not only that r varies as a
function of ‘political’ factors, rather than simply institutional ones, but also that some parties may prefer to under-nominate
to concentrate their preference votes within the coalition. Such a case is therefore not tractable in an institutions-only model.

16 In a more recent version of their predictive model of district-level party shares (Shugart and Taagepera, 2017, 153–180),
they introduce a constant k to adjust the exponent of σ′

1 (and the deriving quantities) for the ‘embeddedness’ of districts in
the broader political system. The deriving model predictions for intra-party quantities and their performance are very similar
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It follows that the expected number of seats for any seat-winning party is the geometric mean between the

minimum of 1 and the maximum of M
3
4 , i.e. M

3
8 .

Substituting rM for c and M
3
8 for s, we obtain district-level predictions for our quantities of interest in

terms of M , r, and p. These should predict the expected variation in the dependent variables across any

seat-winning list.

v1 = (scp)−
1
4 = (prM

11
8 )−

1
4 (8)

Nc = (scp)
3
8 = (prM

11
8 )

3
8 (9)

vs = (s4cp)−
1
4 = (prM

5
2 )−

1
4 (10)

Of course, we need not pass by the list-level model to derive these district-level predictions (although it

is a useful illustrative step). For instance, equation 8 can be obtained as the geometric mean of the upper

bound p−
1
2 and the lower bound (M

3
8 × rM)−

1
2 . The lower bound is in turn 1

c∗ , i.e. the inverse of the

geometric mean between rM , the maximum number of candidates a list can field, and M
3
8 , the expected

number of seat-winners for the median seat-winning list, denoting the minimum number of candidates that

have an incentive to compete for votes in such a list.

4 Data

To test the models, I collected preference shares for candidates at the district-list-election level for 31 Lower

Chamber elections in nine preferential-list PR systems, including both open- and flexible-list systems.17

Preference shares for each candidate in a list are defined as a candidate’s share of all preferences cast for

the party in the district they run in. From these, I coded the actual values of v1, Nc and vs for each

list-district-election observation: these serve as the dependent variables in the empirical test of the models.

All these elections were conducted under PLPR rules, and there was no major institutional change over

the period of time considered. Table 1 summarises some key inter-party and intra-party characteristics of

using this more complex value: see Appendix section B.2.
17I excluded results from two single-member districts: Aosta, where c = 1 and thus is effectively not a preferential-list system;

and Åland, where the data available does not allow to isolate which candidates belong to which lists (all are listed as ‘Other’
as the Swedish-speaking region has its own party system).
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Table 1

General Information

Country Years Assembly Name Elections Districts Size list type Pref. Vote

Belgium 2003-19 Chambre des Représentants 5 11 150 flexible optional
Cyprus 2011-21 Vouĺı ton Antiprosópon 3 6 56 opena optional
Czechia 2013-21 Poslanecká Sněmovna 3 14 200 flexible optional
Estonia 2011-19 Riigikogu 3 12 101 flexible mandatory
Finland 2011-19 Eduskunta 3 12 200 open mandatory
Italy 1976-92 Camera dei Deputati 5 31 630 open optional

Peru 2014-21 Congreso de la República 3 26b 130 open optional
Poland 2011-19 Sejm 3 41 460 open mandatory
Slovakia 2012-20 Národná Rada 3 1 150 flexible optional

Seat Distribution Rules

Inter-party dimension Intra-party dimension

Country PR Formula Party Thresh. Max. No. Cands. Preference Thresh. Maximum Votes

Belgium D’Hondt — M quota-basedc M
Cyprus Hare 3.6% M — M/4 (rounded up)
Czechia D’Hondt 5% varies by district 5% of party votes 4

Estonia D’Hondtd 5% M+2 quota-basedc 1
Finland D’Hondt — M or 14 (for M ≤ 14) — 1

Italy Imperialid — M — 3 or 4 (for M ≥ 15)
Peru D’Hondt 5% M or 3 (for M ≤ 3)e — 2

Poland Sainte-Laguë 5%f 2 ×M — 1
Slovakia Hag.-Bischoff 5% M 3% of party votes 4

Notes: (a) In Cyprus, the vast majority of MPs are elected via open-list PR. However, party leaders are elected automatically

from the list they run in. But this applies only to 5-6 candidates per election-year, so while technically flexible, the system

might be considered virtually open (Passarelli, 2020, pp. 92-93). (b) In the 2021 election, there were 27 districts, as the district

reserved for voters resident abroad was separated from the Lima district. (c) In Belgium, the threshold is equal to the party’s

Hagenbach-Bischoff quota; in Estonia, the threshold is 10% of the Hare quota. See Passarelli (2020, pp. 88-9 and 96-97)

for details. (d) In Italy and Estonia, compensation mandates are allocated to party and districts via an upper tier. (e) The

nomination limit was raised to 4, for districts electing fewer than 4 seats, in 2021. (f) The representation threshold in Poland

is 5% for single-party lists, but 8% for coalitions.

each electoral system. As discussed, many institutional differences on either dimension are not explicitly

modelled: the assumption, or rather the ‘wager’, is that actors will behave similarly in list-based systems that

are sufficiently proportional and sufficiently preferential. The cases were mainly selected due to considerations

of data availability; nonetheless, the sample contains a diverse range of PLPR institutional set-ups:

— Five OLPR systems (Cyprus, Finland, Poland, Italy, Peru) and four FLPR systems (Czechia, Slovakia,

Belgium, Estonia).

— Three countries where voters must cast a preferential vote (Estonia, Finland, Poland) and six where

they may do so, or otherwise cast only a list vote (Belgium, Cyprus, Czechia, Italy, Peru, Slovakia).
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— Four countries where parties cannot nominate more candidates than the district magnitude (Belgium,

Cyprus, Italy, Slovakia) and five where they can over-nominate (Czechia, Estonia, Finland, Peru,

Poland).

— Three simple PR systems on the inter-party dimension (Belgium, Finland, Italy) and six where pro-

portionality is corrected via the introduction of preference thresholds (Cyprus, Czechia, Estonia, Peru,

Poland, Slovakia).

— Six countries employing a divisor formula (Belgium, Czechia, Estonia, Finland, Peru), and three using

a quota formula (Cyprus, Italy, Slovakia).

— Six countries allowing multiple preference votes (Belgium, Cyprus, Czechia, Italy, Peru, Slovakia) and

three restricting voters to one preference vote (Poland, Finland, Estonia).

Table 2: Median values of the variables of interest (maxima and minima in parentheses).

Dependent Variables

Country Observations v1 Nc vs

Belgium 270 0.28 (0.12–0.62) 7.87 (2.38–14.99) 0.11 (0.02–0.59)
Cyprus 84 0.25 (0.11–0.65) 6.74 (2.07–15.10) 0.21 (0.04–0.59)
Czechia 241 0.16 (0.09–0.48) 13.18 (4.12–22.58) 0.11 (0.02–0.35)
Estonia 160 0.44 (0.17–0.94) 3.82 (1.13–8.22) 0.32 (0.03–0.85)
Finland 230 0.23 (0.09–0.9) 8.04 (1.22–23.09) 0.14 (0.02–0.90)
Italy 906 0.26 (0.07–0.96) 7.61 (1.09–27.31) 0.18 (0.01–0.96)
Peru 217 0.40 (0.15–0.75) 3.40 (1.69–15.54) 0.36 (0.01–0.75)
Poland 489 0.35 (0.09–0.90) 5.72 (1.23–18.26) 0.17 (0.01–0.73)
Slovakia 20 0.26 (0.17–0.39) 9.39 (5.82–13.02) 0.01 (0.001–0.02)

Independent Variables

Country c s p M r

Belgium 16 (4–24) 2 (1–11) 16 (4–24) 15 (3–24) 1 (1–1)
Cyprus 11 (3–20) 1 (1–7) 3 (1–5) 11 (3–20) 1 (1–1)
Czechia 22 (14–36) 2 (1–11) 4 (4–4) 12 (5–26) 1.8 (1.31–2.8)
Estonia 10 (7–17) 2 (1–6) 1 (1–1) 8 (5–15) 1.2 (1.13–1.4)
Finland 17 (2–36) 2 (1–11) 1 (1–1) 17 (6–36) 1 (1–2.33)
Italy 20 (3–54) 2 (1–20) 4 (3–4) 21 (2–55) 1 (1–1)
Peru 5 (3–36) 1 (1–15) 2 (2–2) 5 (1–36) 1 (1–4)
Poland 23 (13–40) 2 (1–12) 1 (1–1) 12 (7–20) 2 (2–2)
Slovakia 150 (148–150) 15.5 (10–83) 4 (4–4) 150 (150–150) 1 (1–1)

Turning now to the observed values of the variables of interest, table 2 reports median, maxima and
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minima for the dependent (v1, Nc, vs) and independent (c, s, p, r, M) variables, computed at list level and

broken down by country. A descriptive analysis of list-level variables is also reassuring with regards to the

assumption that parties always over-nominate: the mean ratio of c/M across the whole sample is 1.30, while

the mean value of r is 1.31, meaning that the institutional limit to nominations is effectively tantamount

to the number of candidates nominated by seat-winning parties. Even in Poland, where r is highest as lists

may nominate up to 2M candidates (and in theory they may field as few as M/2), on average seat-winning

lists nominate a number of candidates that is 1.97 the district magnitude.
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5 Methodology

Restating the conclusions of the theoretical section, I derived six quantitative predictions in the form Y = Xk

linking products of electoral quantities to indicators of intra-party competitiveness: one for each of the three

dependent variable in the list-level model, and one for each of the three dependent variable in the district-level

institutions-only model. These are effectively our hypotheses: given a product of electoral system quantities

as the base X of the function, the exponent k is expected to take a certain value derived theoretically (in

practice, − 1
4 or 3

8 ). I notate the value of the exponent expected from theory as k̂ and the value obtained

from regression as β in the rest of the analysis. Summing up:

Y variable X (list-level) X (district-level) k̂ (expected slope)

v1 (first candidate’s share) scp prM
11
8 − 1

4 or −0.25

Nc (eff. number of candidates) scp prM
11
8

3
8 or 0.375

vs (last eligible cand. share) s4cp prM
5
2 − 1

4 or −0.25

The empirical section proceeds in two steps:

— In subsection 6.1, I employ regression analysis to test the bias of the slope predictions k̂ in the table

above. Moreover, for v1 and vs, I compare the revised intra-party models’ performance to their equiv-

alents in SBW. The bias of the models is measured here as the discrepancy between the expected and

observed slopes, normalised by the standard error.

— In subsection 6.2, I compare the precision of the individual predictions of the models of intra-party

quantities with the better established predictions of their inter-party analogues of the seat-product

model (SPM).18 Specifically, the models for the fractional share of first-ranked candidates in a district

(v1) are compared with the SPM predictions for the fractional share of seats for the largest party in

an assembly (σ1); the models for the effective number of candidates (Nc) are compared with the SPM

predictions for the effective number of parliamentary parties (NS). The precision of the predictions is

measured by computing the deviation-from-prediction of each observation, using the d index proposed

by Nemčok and Šedo (2018) and explained shortly in subsection 5.2. The d index is computed for

(1) the values of v1 and Nc of each list compared to the list-level model’s predictions, (2) the median

18Bias and precision are here used to denote different aspects of model performance. Bias indicates error in the extent to
which a model describes the overall relationship between variables in the sample, while precision indicates the extent to which
the model can predict individual observations in the sample. The latter is therefore a summary measure of bias and variance,
and applies to observations rather than samples.
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values of v1 and Nc for each district compared with the district-level model’s predictions, and (3) the

values of σ1 and NS for each assembly election compared with the SPM’s predictions.

5.1 Model Bias and Comparison with the SBW Model

In the first empirical section, I present graphical summaries of each of the six hypotheses, where the predicted

and observed functional forms of the regressions are plotted against the data. Moreover, I report the

exponential slope coefficients obtained by performing regression analysis on the full sample, only on the

sample of elections contested under OLPR rules, and only on the sample of elections contested under FLPR

rules. As a measure of coefficient bias, I compute for each of these the absolute difference between the

observed slope β and predicted estimate k̂ normalised by the standard error of the estimate (standard errors

are clustered at the election-district level).

To test the models, I follow the methodological recommendations in Taagepera (2008) and employ fixed-

intercept exponential regressions where the relationship between variables is modelled as Y = Xβ .19 This is

equivalent to a log-log regression where the intercept is set to be zero, so that fitted values may not exceed

X0 = 1. Regression parameters are thus constrained to predict positive values of the dependent variable,

lying between 0 and 1 when k is negative and larger than 1 when k is positive. Moreover, the fixed-intercept

serves an ‘anchor point’ (Taagepera, 2008, pp. 44-45) that prevents us from making illogical prediction: we

know a priori that in the limit where a PLPR contest collapses into a single-member district plurality race,

c = s = p = scp = 1 and all three quantities v1, Nc and vs will be 1. In other words, the seat-winning

party will field only one candidate, who will come ‘both first and last’ with 100% of the votes. Deriving an

empirical intercept other than 1 would predict an absurdity.

In the presentation of the results for v1 and vs, I also compare the model performance against the existing

predictions for these quantities in SBW.20 Their estimation of v1 in open-list systems, as discussed, is

v1 = c−
1
2 (11)

As for vs, the SBW model’s expectation is that in an open-list PR system the share of preference votes

of the last elected candidate is comprised between v1 and the last elected candidate’s share under SNTV

rules, which is separately estimated as c−1. Hence, in principle,

19 The estimator used is simple OLS. In the appendix section B.3, I present the results of the same tests employing ‘symmetric
regression’, a different estimator favoured by Taagepera (2008). Moreover, I present slope estimates dropping one country from
the sample, to show that the predictive accuracy is not primarily driven by any one institutional set-up (section B.4).

20To my knowledge, there are no existing logical models for Nc.
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vs = (c−
1
2 × c−1)

1
2 = c−

3
4 (12)

However, SBW prefer to employ the observed value of the exponent for v1 instead of the ‘ignorance-based’

value of − 1
2 , so that after observing the empirical value of the slope β, where v1 = cβ , vs is estimated as

vs = (cβ × c−1)
1
2 = c

−1+β
2 (13)

Both versions – which I call respectively the ‘uncorrected’ and ‘corrected’ SBW models – are computed

and compared to my model’s predictions for v1. The extent to which the observed relationship between

c and vs deviates from these predictions is again calculated by taking the absolute value of the difference

divided by the standard error.

5.2 Model Precision Compared to Inter-Party Models

The final empirical section addresses the question posed at the very beginning of the paper: to what extent

can we make predictions about intra-party competition in the same way as the seat-product model does with

respect to inter-party competition? To do so, I compare the list- and district-levels models for v1 and Nc

with their inter-party analogues:21 respectively, the fractional share of seats of the largest party (σ1) and

the effective number of parties in an assembly (NS). As noted at the start of the paper, the inter-party

quantity predictions of the seat-product model consist of functions of the product of district magnitude (M)

and assembly size (S). The formulas for σ1 and NS given in Taagepera (2007) and Shugart and Taagepera

(2017) are, respectively:

σ1 = (MS)−
1
8 (14)

NS = (MS)
1
6 (15)

Following Nemčok and Šedo (2018), in this part of the analysis I compute for each observation a measure

of discrepancy d as log10(y
ŷ ), where y is the observed value and ŷ is the prediction. The logarithmic function

of the ratio between observed and predicted values takes the value of 0 when the observation perfectly mirrors

21There is no obvious inter-party counterpart to vs. An analysis of deviation-from-prediction of the vs model analogous to
the one conducted for v1 and Nc is presented in the appendix, without comparison to inter-party quantities.
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theoretical expectations, positive values when the observed quantity is larger than expected and negative

values when it is smaller. More specifically, d expresses the factor by which the prediction is off: if the

observed value is twice the predicted value, d will be log10(2) ≈ 0.3; if it is half the predicted value, d will

be log10(0.5) ≈ −0.3. Again following Nemčok and Šedo (2018), I use these two values as the bounds of

‘tolerable’ deviation, and compute the percentage of cases that fall in between, and thus are predictable

from input variables within a factor of 2. I also report measures of central tendency for |d|, from which it

is possible to extrapolate the average factor of error of the model predictions, as (10|d| − 1) × 100%. For

instance, predictions that are twice or half the observed value will both have |d| ≈ 0.3, and the factor of

error will be (100.3 − 1) × 100% = (2 − 1) × 100% = 100%.

For the intra-party model, I present two sets of results: first, I compute d for v1 and Nc for each of the

2,617 list-in-district observations in the intra-party dataset described in section 4, using the predictions of

the list-level model. Then, I compute d for the median values of v1 and Nc in each of the 549 districts in

my data, using the predictions of the district-level model.22 As discussed, the district-level predictions will

take the same value for each list, and they are meant to capture the level of competitiveness for any list in

expectation. For the inter-party analysis, I replicate and extend the analysis in Nemčok and Šedo (2018),

using the country-election level data they gathered on institutional characteristics and election results in 560

democratic elections.23

Therefore, I compute the index d of six quantities: the list-level observed intra-party quantities v1 and

Nc; the district-level median intra-party quantities ṽ1 and Ñc; and the election-level inter-party quantities

σ1 and NS . By the definition of d, the formulas are as follows:

Intra-Party Intra-Party Inter-Party

Quantity d index Quantity d index Quantity d index

(List-Level) (District-Level) (Election-Level)

v1 log10

(
v1

(scp)
− 1

4

)
ṽ1 log10

(
ṽ1

(prM
11
8 )

− 1
4

)
σ1 log10

(
σ1

(MS)
− 1

8

)
Nc log10

(
v1

(scp)
3
8

)
Ñc log10

(
Ñc

(prM
11
8 )

3
8

)
NS log10

(
NS

(MS)
1
6

)

22In section 6.2, I use the median values, as logical models are meant to yield predictions that are equally likely to be above
or below the real values. In section E of the Appendix, I repeat this exercise with the mean values of the variables. Medians of
v1 and Nc are notated as ṽ1 and Ñc, while means are notated as v̄1 and N̄c.

23The Nemčok-Šedo dataset of electoral quantities is described in the Appendix, section C.
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6 Empirical Tests

6.1 Model Bias and Comparison with the SBW Model

6.1.1 First-ranked Candidate Share (v1)

Regressing the observed values of v1 on scp returns the fixed-intercept exponential function of Y = X−0.262

with the coefficient having a 95% confidence interval (−0.254,−0.270). The list-level prediction k̂ = −0.25

therefore falls just outside the confidence interval, narrowly over-predicting first-candidate share. As for

institutions-only model, the regression of v1 on the product prM
11
8 returns the fixed-intercept exponen-

tial function Y = X−0.253 with the coefficient having a 95% confidence interval (-0.260, -0.246), therefore

including the prediction k̂ = −0.25.

Figure 4 plots the predicted and observed exponential functions for the two models. In a pattern that

we will observe across model tests of v1 and Nc, the Slovak lists on the far right of the plots, which take

the highest values of the product as they refer to parties competing in a district of magnitude 150, have

substantially higher values than predicted. While the institutions-only prediction presents even less bias than

the already rather accurate list-level model, it is clear from the plot there is much more scatter around it,

as the independent variable takes the same value for all lists-in-district regardless of their actual inter-party

competitiveness.

Table 3: Comparison of model fits for predictive models of the first-ranked candidate’s fractional share of preference
votes (v1).

Full Sample Open List Only Flexible List Only

k̂ β |β−k̂|
se β |β−k̂|

se β |β−k̂|
se

List-Level Model -0.250 -0.263 3.088 -0.272 5.753 -0.243 0.806
District-Level Model -0.250 -0.253 0.992 -0.259 2.264 -0.243 1.018
SBW Model -0.500 -0.435 11.574 -0.423 13.456 -0.468 2.270

Table 3 reports a comparison of the slope coefficients obtained from regressing v1 on the products of

list-level and district-level quantities, against the performance of the SBW model, where v1 is regressed on

c. Absolute values of the discrepancy between predicted and observed values of the coefficients normalised

by the standard error are reported across the full, open-list and flexible-list samples. While both the refined

models outperform the coarse model, the district-level model’s predictions are remarkably accurate, with k̂

falling within one or two standard errors from the prediction, depending on the sample specification. In the

full sample, the SBW’s slope falls over 11 standard errors away from the observed slope: a much larger bias
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Figure 4: Test of list- and district-level predictions for the first-ranked candidate’s share of preference votes:

predicted and observed slope of v1 regressed on scp and prM
11
8 .
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than the 3 standard errors of the list-level ‘revised’ model and the 1 standard error bias of the district-level

‘revised model’. The SBW model for v1 performs ‘best’ in the flexible-list sub-sample: this is very surprising

as it was meant for and tested on open-list systems only.

6.1.2 Effective Number of Candidates (Nc)

Regressing the observed distribution of the effective number of candidates Nc on scp returns a fixed-intercept

exponential function of Y = X0.391 with the coefficient having a 95% confidence interval (0.381, 0.40). Again,

the prediction k̂ = 0.375 comes close to the observed value of the slope but somewhat understates intra-party

competitiveness, in this case by narrowly under-predicting Nc. Regressing Nc on prM
11
8 returns a fixed-

intercept exponential function of Y = X0.379 with the coefficient having a 95% confidence interval (0.367,

0.390), therefore including the predicted value of k = 0.375. Figure 5 plots the predicted and observed

exponential functions for the two models, and table 4 reports the observed slope coefficients across different

specifications of the sample. As in the case of v1, the institutions-only model is noticeably less biased than

the list-level model and its performance presents little variance due to sample specification. Again, the

graphs show clear outliers occurring when the scp product and its institution-only equivalent prM
11
8 take

the highest observed values. These occur in Slovakia’s nationwide district.24

Table 4: Model fits for predictive models of the effective number of candidates.

Full Sample Open List Only Flexible List Only

k̂ β |β−k̂|
se β |β−k̂|

se β |β−k̂|
se

List-Level Model 0.375 0.391 3.136 0.402 5.414 0.369 0.582
District-Level Model 0.375 0.379 0.888 0.385 1.878 0.367 0.928

24For further discussion of these outliers, see section 7.3.
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Figure 5: Test of list- and district-level predictions for the effective number of candidates: predicted and observed

slope of Nc regressed on scp and prM
11
8 .
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6.1.3 Last Eligible Candidate’s Share of Preferential Votes

Regressing vs on s4cp returns a fixed-intercept exponential function of Y = X−0.262 with the coefficient hav-

ing a 95% confidence interval (-0.266, -0.258). Regressing vs on prM
5
2 returns a fixed-intercept exponential

function of Y = X−0.237 with the coefficient having a 95% confidence interval (-0.244, -0.230). As shown

in figure 6, in this case we find that the list-level model somewhat under-predicts vs, while the district-

level model somewhat over-predicts it. Table 5 reports coefficients across specifications of the sample for

the list- and district-level models, alongside the normalised discrepancy from the expected value of k̂. In

this case, the SBW model – especially in its ‘corrected’ version where k̂ depends on the empirical slope of

v1 as a function of c – comes close to the model performance of the two ‘refined’ models. Indeed, in the

sub-sample of flexible-list observations, it outperforms them. However, there is a large amount of variation

in performance of the SBW model fit across specifications of the sample: something that we do not observe

to the same extent for the ‘refined’ list- and district-level models. In the full sample of observations, the list-

and district-level models for vs present more bias than in the models for v1 and Nc described above, but

nonetheless they still both outperform the SBW model.

Table 5: Comparison of model fits for predictive models of the last eligible candidate’s preference share.

Full Sample Open List Only Flexible List Only

k̂ β |β−k̂|
se β |β−k̂|

se β |β−k̂|
se

List-Level Model -0.250 -0.262 6.928 -0.259 4.206 -0.270 6.971
District-Level Model -0.250 -0.237 4.636 -0.229 7.800 -0.256 1.130
SBW Model (uncorrected) -0.750 -0.655 13.572 -0.622 24.492 -0.750 0.018 -0.717 -0.655 8.897
SBW Model (corrected) -0.712 -0.622 12.798

-0.734 -0.750 1.008

30



Figure 6: Test of list- and district-level predictions for the last eligible candidate’s share of preferences: predicted

and observed slope of vs regressed on s4cp and prM
5
2 .
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6.2 Model Precision and Comparison with Inter-Party Models

6.2.1 First-ranked candidate (v1) and largest party (σ1) predictions compared

Figure 7 plots on the y-axis the values of the discrepancy index d – which correspond to the log-transformed

ratio of observed and predicted values – and on the x-axis is the base product of each of the three predictive

models under examination. Specifically, the top panel visualises the logged ratio of observed values of v1

and the predicted quantity (scp)−
1
4 for all seat-winning lists in the dataset described in section 4. The

middle panel represents the logged ratio of observed median values of v1 in each district and the prediction

(prM
11
8 )−

1
4 , drawing on the same data. The bottom panel visualises the logged ratio of observed values

of σ1 (fractional share of the largest party in an assembly) and the SPM predicted values of this quantity,

computed as (MS)−
1
8 on the Nemčok-Šedo dataset of elections.

It is evident from the plots that list-level predictions of v1 tend to fall farther from zero than those of the

other models. However, when it comes to predicting median intra-party competition, the panel plot for the

district-level model is visually very similar to that of the SPM’s predictions. Not only do the vast majority of

the values of d fall within -0.3 and 0.3, indicating that a prediction is within a factor of 2 from the observed

value, but the shapes of the distributions of d in the second and third panels are also quite similar, even though

they represent distinct quantities computed on distinct datasets. Specifically, both predictions of first-ranked

candidate shares and of largest party shares tend to ‘miss the mark’ most clearly when the models’ base

products take the highest values – i.e. for those sets of electoral institutions that in theory should be most

conducive to competition – and in both cases the prediction overstates competitiveness relative to reality.

This suggests that there are some upper constraints of political nature to the fragmentation of a system can

handle when it is least constrained: under highly permissive rules ‘on paper’, party and preference votes will

tend to concentrate in ways that cannot be accounted for simply by institutional factors (or at least not the

parsimonious set of institutional factors that are sufficient to predict competition in other contexts).25

Table 6: Summary indicators of deviation from prediction: models for v1, ṽ1 and σ1 compared

median of |d| mean of |d| share d < log10(2)
value |d| % error value |d| % error and d > log10(0.5)

list-level model (v1) 0.119 31.6% 0.149 40.9% 87.9%
district-level model (ṽ1) 0.083 21.1% 0.103 26.8% 97.1%
seat-product model (σ1) 0.091 23.4% 0.105 27.4% 96.2%

25Interestingly, Slovakia is a case of both phenomena occurring at the same time: a highly permissive nationwide PR system
that should have relatively small largest parties and low first-ranked candidate shares, but presents moderate levels of vote
concentration on both dimensions, at least in some elections.
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Figure 7: Comparison of deviation from prediction for v1 (list-level model), median ṽ1 (district-level model) and σ1

(seat-product model). Dashed lines represent values of d corresponding to values where the observed value is either
twice or half the prediction.

Table 6 confirms the conclusions drawn from the visual presentation of the data. The average absolute

values of d are highest for the list-level model of v1, and similarly low for the district-level model of ṽ1
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and the seat-product model for σ1. Alongside the measures of central tendency, the table also reports the

associated error factors: the median (mean) prediction of the list-level model is off by 32% (41%); the

median (mean) prediction of the district-level model is off by 21% (27%); the median (mean) prediction of

the seat product model is off by 23% (27%). The logical models under consideration can predict the largest

party’s fractional share of seats and the median fractional share of first candidate’s preference votes from

institutional quantities for almost all observations (96–97%) in the samples within a factor of 2. However,

list-specific predictions are clearly less precise, with 12% of the model expectations being more than double

or less than half the actual values.

6.2.2 Effective Number of Candidates (Nc) and Parties (NS) Predictions Compared

This subsection reproduces the same analysis of ‘deviation from prediction’ but for a different set of dependent

variables: the effective number of candidates of a list (Nc), the median effective number of candidates for a

list in a district (Ñc), and the effective number of parties in an assembly (NS).

Figure 8 plots the values of d against the models’ base products. In keeping with the observations of

the previous subsection, the visualisations show that the predictions of the list-level model are much more

widely scattered, and hence less precise, than those of the district-level model and the SPM. And once

again we find that the distribution of the deviation-from-prediction values for median effective number of

candidates in a district and the effective number of parties in an assembly are strikingly similar. In both cases,

the vast majority (94.5%) of values lie within the bounds of ‘tolerable’ discrepancy comprised between -0.3

(log10 0.5) and 0.3 (log10 2); and in both cases, the most notable deviations are instances of over-prediction of

competitiveness observed where the base products take the highest values observed. Table 7 reports measures

of central tendency for the distribution of d across models, which confirm that the district-level model and

the seat-product model are about as precise in predicting the effective number of parties/candidates in their

respective samples.

Table 7: Summary indicators of deviation from prediction: models for Nc, Ñc and NS compared

median of |d| mean of |d| share d < log10(2)
value |d| % error value |d| % error and d > log10(0.5)

list-level model (Nc) 0.142 38.6% 0.169 47.6% 84.3%

district-level model (Ñc) 0.106 27.8% 0.126 33.8% 94.5%
seat-product model (NS) 0.113 29.6% 0.124 33% 94.5%

34



Figure 8: Comparison of deviation from prediction for Nc (list-level model), median Ñc (district-level model) and
NS (seat-product model) . Dashed lines represent values of d corresponding to values where the observed value is
either twice or half the prediction.
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Summing up, the answer to the guiding question of whether we can predict intra-party quantities from

institutional variables in the same way as we can predict inter-party is thus arguably both a ‘no’ and a ‘yes’.

On the one hand, the list-level model presented fails to estimate first-ranked candidate’s preference share for

individual lists with the same precision of the SPM’s prediction for the fractional share of seats of the largest

party in an assembly. On the other hand, at district level, we can derive a prediction of the median value

of v1 and Nc for seat-winning parties from purely institutional variables that is just as precise as the SPM’s

prediction for σ1 and NS . Of course, one may retort that even in this case the terms of the comparisons

presented are not entirely ‘fair’: although the number of districts used to test district-level predictions (549)

and the number of elections used to test the SPM predictions (560) are almost identical, the SPM draws on

data from 40 countries, while the intra-party model only on nine. At the same time, to compare ‘like with

like’, we ideally may want to compare district-level inter-party predictions with district-level intra-party

prediction. These are both valid caveats to the comparison presented, which will be addressed in future

research through further data collection of district-level and list-level results.
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7 Discussion and Conclusion

Intra-party competition has often been thought of as unpredictable and idiosyncratic in comparison to inter-

party competition, to the extent that most works on PLPR begin by commenting on how poorly understood

and understudied this aspect of electoral institutions are.26 This paper aims to join a small but growing

group of theoretical (Shugart, Bergman and Watt, 2013; Buisseret and Prato, 2020; Buisseret et al., 2022)

and empirical (Selb and Lutz, 2015; Renwick and Pilet, 2016; Blom-Hansen et al., 2016; Däubler and Hix,

2018; Passarelli, 2020; Cheibub and Sin, 2020; Dodeigne and Pilet, 2021) works aiming to identify order in

the apparent chaos of intra-party competition in candidate-centred electoral systems. To conclude the paper,

I present a possible application of the framework outlined to political practice, discuss the implications of

my analysis for further study of PLPR systems, and note some shortcomings of the models.

7.1 An Application to Institutional Choice

What practical use is it to know how preference votes ‘should’, in expectation, be distributed within a PLPR

list? As an illustration of the potential relevance of the models presented to institutional design, let us

consider how an institutional engineer may decide to fix the preference threshold in a FLPR system, so as to

achieve a desired balance-of-power between voters and parties. Consider a FLPR system where a candidate

must receive at least a fractional share t of preference votes to be elected on the basis of preferential votes;

if the number of seats allocated to a list exceeds the number of candidates that meet this threshold, the

remaining seats are allocated according to the ballot position determined by the party. Thus, t effectively

indicates how much control parties and voters have on the intra-party allocation of seats: the higher the

fractional value of t, the more candidates will be elected from their ballot position; the lower the fractional

value of t, the more candidates will be elected from preference votes.

From the theoretical considerations above, we can identify three key values of t expressed as a fractional

share of preference votes: (1) the value of t that is equally likely to produce one or no candidates elected on

preferences in a district (t1), (2) the value of t that is equally likely to produce M or M−1 candidates elected

on preferences in a district (tM ); and (3) the value of t whereby in expectation 50% of MPs are elected on

preference vote ranking and 50% of MPs are elected due to ballot position (tM
2

). t1 is realised when the

threshold equals the expected fractional share of preference votes of the relative top-performing seat-eligible

26For instance, for Buisseret and Prato (2018, p.1) “[i]n spite of their widespread use, open- and flexible-list proportional
representation [...] systems have received little attention from empirical scholars and almost none from theoretical scholars. In
large part, this is due to the fact that these systems vary tremendously in their operation across countries, bedeviling attempts
at classification and limiting scholarly efforts to the analysis of specific cases.”
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candidate. As, in expectation, such candidate is the first-ranked candidate (who gets a preference share of

v1) of the smallest party (which expects to win one seat), it follows that

t1 = (p× rM × 1)−
1
4 = (prM)−

1
4 (16)

As for tM , the institutional engineer would set the threshold to equal the expected preference share of

the seat-eligible candidate gaining the smallest relative preference share in the district. As, in expectation,

such candidate is the last-ranked candidate (who gets a preference share of vs) of the largest party (gaining

M
3
4 seats), it follows that

tM =
(
p× rM × (M

3
4 )4

)− 1
4

= (prM4)−
1
4 (17)

I conjecture that tM
2

may be approximated as the geometric mean of t1 and tM , so that

tM
2

=
(

(prM)−
1
4 × (prM4)−

1
4

) 1
2

= (prM
5
2 )−

1
4 (18)

Which version of t should the institutional engineer choose? t1 is of no use: a candidate popular enough

to get that high a share of preference votes is likely to be already in a seat-eligible position. Effectively, t1

produces what Däubler and Hix (2018) term ‘weakly flexible’ lists, where it is unlikely that any candidate

beyond the top-ranked gather enough preference votes to be elected on the basis of their personal support.

tM , conversely, would be an apt choice if the institutional engineer wanted to have a permissive ‘quasi-open’

list system, which only prevents candidates with very little personal appeal from lucking into a parliamentary

seat on a sparse number of preference votes. Under tM , we are guaranteed to observe what Däubler and

Hix (2018) term ‘strongly flexible’ lists. In fact, small parties are effectively competing under open-list

rules, because the threshold is too low to ever make a difference, while large parties retain occasionally

some degree of control over the intra-party allocation but only for the last few seats. The choice of tM
2

would be a compromise between the two. On the one hand, parties retain a substantial deal of control

over election outcomes: though half of the candidates in a district are elected on preferences, most of them

would presumably be in seat-eligible ballot positions anyway. However, such a system is still flexible enough

to reward – occasionally – strong performances from down-ballot candidates, making preferential voting

meaningful. Table 8 reports the share of candidates who would have been elected on preference votes under

the different district-level specifications of the threshold derived above, if these elections in the sample had be
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conducted under such FLPR rules. Albeit rudimentary, this analysis is encouraging: in no case the thresholds

are so extreme as to become trivial (some, but not all, candidates are elected on preferences in all cases) and

tM
2

is on average quite close to the speculative prior that it might produce a 50-50 split between candidates

elected on preference ranking and candidates elected on ballot position. However, cross-country variation is

substantial.

Table 8: Simulation of PLPR outcomes under different values of hypothetical preference thresholds.

Share of candidates elected on preferences under
Country/Sample t1 tM

2
tM

Belgium 0.18 0.65 0.98
Cyprus 0.02 0.57 0.99
Czechia 0.02 0.39 0.95
Estonia 0.10 0.58 0.84
Finland 0.03 0.36 0.97
Italy 0.08 0.49 0.99
Peru 0.05 0.55 0.92
Poland 0.06 0.39 0.75
Slovakia 0.04 0.27 0.65
Country Average 0.07 0.47 0.89
Full Sample 0.07 0.46 0.92

Of course, in most existing FLPR systems, thresholds are set as a function of list rather than preference

votes, so that the values of t derived above are directly applicable to real-world electoral systems only in

cases where p = 1 and preferential vote is mandatory.27 If p > 1, preference votes exceed list votes, and

thus t would have to be adjusted upwards by a factor of p
1
2 , the expected number of preferences-per-voter.

If preferential voting is optional, then list votes exceed preference votes, and t would have to be adjusted

downwards by the expected fractional share of voters who cast a preference votes. This is a less readily

predictable factor, not just because it may largely depend on political rather than institutional factors

(party-voter linkages, voter engagement, democratic experience, party system and personnel stability etc.),

but also because the extent to which voters will make use of a preference vote is likely endogenous to list

flexibility itself (Däubler, 2020; Renwick and Pilet, 2016, pp. 217–248).

7.2 Implications for the Study of PLPR

The most novel aspect of the model presented is the introduction of proxies for expectations of inter-party

performance as an input variable, in the form of s (the number of seats effectively gained by a list) for the

27An even less immediately tractable case is when t is expressed as a function of the electoral quota. However, this case
could be tackled drawing on recent advances in modelling party vote share (Shugart and Taagepera, 2017, pp. 125-138), and
thereby expressing expected preference shares as fractions of expected quotas attributed to each party.
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list-level model, and M
3
8 (the expected number of seats for the median list) for the district-level model. The

role of actors’ expectations in shaping electoral system outcomes has long been studied as a key mechanism

shaping inter-party competition. This is effectively what Duverger (1959) termed the ‘psychological effect’

of district magnitude, and scholars working in his tradition expanded to encompass parties’, as well as

voters’, strategic behaviour (Cox, 1997). Yet, the recognition of a similar mechanism being at play at the

intra-party level departs from the standard theoretical assumption, for instance made by Shugart, Bergman

and Watt (2013), that district magnitude affects list competitiveness only insofar as it poses constaints

on parties’ nominating behaviour. The revised model, conversely, takes into account two avenues through

which M is connected to intra-party competition: by constraining candidate nominations and by providing

candidates (and voters) with priors on the viability of their candidacy. Future empirical research might

aim to document the extent of actors’ anticipations about list performance and its incidence over aspects of

candidate behaviour with respects to intra-party competition.

The second innovative aspect of the paper lies in the consideration of open- and flexible-list PR systems, as

well as single- and multiple-preference forms of PLPR, within the same theoretical framework. As discussed,

the prospect of broadening the scope of application of logical models beyond simple single-vote OLPR by

taking into account multiple preference votes is something of a ‘wager’. That is, we posited that – once

we account for the different number of preferential votes used across systems – the intra-party allocation

rules distinguishing OLPR from FLPR would not make a substantial difference. As the analysis presented

in section 6.1 shows that the revised model works reasonably well across the FLPR and OLPR sub-samples

(unlike the SBW model), we can tentatively conclude that the wager paid off. There is an important

pragmatic rationale for extending the comparative analysis of intra-party competition to complex types of

PLPR: these constitute the overwhelming majority of empirical cases. In Passarelli’s (2020) review of PLPR

systems, out of 29 countries for which this information is available, only seven employ single-preference OLPR

(Finland, Kosovo, Poland, Brazil, Colombia, Indonesia, Lebanon), two of which have only recently switched

from more complex systems (Indonesia from FLPR, and Kosovo from multiple-preference OLPR) and one of

which allows parties to field closed lists if they wish (Colombia). In contrast, thirteen countries have p > 1

and fourteen use some form of FLPR for electing their national parliaments. In line with empirical research

showing that prospects of advancement to electable positions produce a substantial degree of personal vote-

seeking effort even under relatively restrictive FLPR rules (André et al., 2017), the findings of this paper

should therefore encourage researchers to treat FLPR as a cognate of OLPR rather than ‘closed lists in
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disguise’, at least as far as the aggregate outcomes of intra-party competition are concerned.

7.3 Limitations

All models are wrong, but some are useful. The reader hopefully will agree that the ones presented in

this paper may belong to the latter category, insofar as they illustrate non-obvious relationships between

electoral system quantities, have respectable predictive power, and – as discussed in this latter section – may

have practical applications to institutional choice. Nonetheless, there are some areas of concern and related

room for improvement; in particular, there are three outstanding issues with the present attempt to model

intra-party quantities, which may be addressed in future research.

First, as noted in various parts of the paper, the models perform particularly poorly in the case of

Slovakia, which employs a nationwide district of magnitude 150 (district magnitude M is equal to assembly

size S). My sense is that this is due to a ‘big fish’ effect: politicians who are popular nationwide, like party

leaders and prominent frontbenchers, can concentrate preference votes to an exceptional degree on their

candidacy. This is of course happens beyond cases where M = S: the model over-predicts competitiveness

just as poorly for the lists including incumbent Prime Ministers like Poland’s Donald Tusk (75% of preference

votes) or Belgium’s Charles Michel (51%), as well as charismatic party leaders like Estonia’s Martin Helme

(94%) and Czechia’s Tomio Okamura (48%). (And, given what a logical model is for, the model would have

no business predicting these cases.) However, where M ≪ S, these ‘big fish’ lists are only a fraction of the

observations; whereas if M = S then all lists will have at least a party leader on the ballot. The resulting

bias of the prediction is thus substantially overstating competitiveness. Future iterations of a model for

PLPR may thus attempt to account for the ‘embeddedness’ of districts in national politics: i.e. as the M
S

ratio tends to one, our prediction for v1 should be adjusted upwards, and that for Nc should be adjusted

downwards. At present, I am unable to justify a quantitative formalisation of such an adjustment.

Secondly, the theoretical derivation of vs rests on the heroic assumption that mean and median of pref-

erence shares of seat eligible candidates are approximately equal. The empirical performance of the deriving

models, both in terms of bias and precision, is respectable; but perhaps it is not respectable enough to

warrant such a mathematical heresy, especially as the models for v1 and Nc tend to do better than those for

vs, and to do so more consistently across specifications of the model and the sample. In sum, vs remains the

weakest link of the interlocked set of equations describing expected quantities of intra-party competition.

A final limitation of the argument presented is a clear definition of its scope conditions. As discussed,
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there is value in extending the analysis to as broad a set of PLPR institutional set-ups as feasible, given the

diversity of real-world variants of this electoral system family. In section 4, the reference to ‘systems that

are sufficiently proportional and sufficiently preferential’ makes for an informal and intuitive way of defining

the scope conditions of the theory, but I recognise that it is not sufficiently precise. A PLPR system with a

very high representation threshold or a very small divisor formula might constrain inter-party competition

enough to alter significantly actors’ expectations over the number of seats at stake for an individual list.

On the intra-party dimension, a FLPR system with an unattainably high preference threshold may make

intra-party competition meaningless, and hence more random than the predictable patterns a logical model

might aim for. Some of these factors may be accounted for by introducing further terms to the formulas, and

I have made the case for sacrificing a degree of parsimony in favour of wider applicability to the complexity

of real-world cases. But, for some extreme cases, we might simply have to conclude that we are dealing with

something other than a preferential list proportional representation system.

7.4 Conclusion

In spite of these shortcomings, the empirical tests presented in the second part of the paper are overall

rather encouraging for our quest towards a model of intra-party competition to match the seat-product

model. Summing up, I have shown that we can predict from electoral and institutional quantities (1) what

percentage of preference votes the top candidate will get, (2) how many candidates will effectively emerge

within a list, and (3) what is the minimum share of preferences a candidate should get to be eligible for a

seat. In the sample considered, these predictions are about as precise as those available for similar indicators

of inter-party competition, they are less biased than those of existing intra-party models, and they perform

consistently across sub-types of PLPR systems. Hopefully, as well as providing a stepping stone towards a

more systematic and comprehensive research agenda on intra-party competition in PLPR, these results may

also serve as testimony to the power of quantitative predictive logical models as a versatile and parsimonious

theory-building tool.
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Cheibub, José Antonio and Gisela Sin. 2020. “Preference vote and intra-party competition in open list PR

systems.” Journal of Theoretical Politics 32(1):70–95.

Cox, Gary W. 1997. Making Votes Count: Strategic Coordination in the World’s Electoral Systems. Cam-

bridge University Press.

Crisp, Brian F, Kathryn M Jensen and Yael Shomer. 2007. “Magnitude and vote seeking.” Electoral Studies

26(4):727–734.
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Appendix

A Within-District relationship between s, v1 and Nc

In section 2.2.2, I motivated the assumption that v1 is endogenous to expectations of seat gains by illustrating

how the distribution of preference shares in a Polish district is ‘flatter’ for more successful parties and ‘steeper’

for smaller ones. The empirical plausibility of this assumption can be more rigorously assessed by considering

the wider universe of districts considered in the analysis (see footnote 8). Tables 1 and 2 report the results

of OLS regressions with district-election fixed effects, where list-level values of v1 and Nc are regressed on

s (the raw number of seats gained) and on s
M , the share of seats gained. Linear and log-log specifications

are presented. Consistently with the assumption, larger list have lower values of v1 and higher values of Nc.

The coefficients are virtually identical when controlling for the number of candidates fielded c (tables 3 and

4), confirming that the relationship is largely independent from parties’ nominating behaviour.

Table 1: District-election fixed effects model: relationship between the number of seats and intra-party quantities.

Dependent variable:

v1 Nc log(v1) log(Nc)

(1) (2) (3) (4)

s −0.007∗∗∗ 0.295∗∗∗

(0.001) (0.017)

log(s) −0.161∗∗∗ 0.151∗∗∗

(0.009) (0.010)

District-Election F.E.

Observations 2,617 2,617 2,617 2,617

R2 0.051 0.127 0.128 0.103

Adjusted R2 −0.201 −0.105 −0.103 −0.136

F Statistic (df = 1; 2067) 110.923∗∗∗ 300.391∗∗∗ 304.531∗∗∗ 236.575∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: District-election fixed effects model: relationship between the share of seats and intra-party quantities.

Dependent variable:

v1 Nc log(v1) log(Nc)

(1) (2) (3) (4)

s/M −0.200∗∗∗ 6.004∗∗∗

(0.015) (0.376)

log(s/M) −0.161∗∗∗ 0.151∗∗∗

(0.009) (0.010)

District-Election F.E.

Observations 2,617 2,617 2,617 2,617

R2 0.077 0.110 0.128 0.103

Adjusted R2 −0.168 −0.126 −0.103 −0.136

F Statistic (df = 1; 2067) 171.882∗∗∗ 255.481∗∗∗ 304.531∗∗∗ 236.575∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: District-election fixed effects model: relationship between the share of seats and intra-party quantities,
controlling for list length.

Dependent variable:

v1 Nc log(v1) log(Nc)

(1) (2) (3) (4)

s −0.007∗∗∗ 0.284∗∗∗

(0.001) (0.017)

c −0.013∗∗∗ 0.196∗∗∗

(0.001) (0.031)

log(s) −0.153∗∗∗ 0.139∗∗∗

(0.009) (0.010)

log(c) −0.558∗∗∗ 0.816∗∗∗

(0.069) (0.072)

District-Election F.E.

Observations 2,617 2,617 2,617 2,617

R2 0.096 0.144 0.155 0.155

Adjusted R2 −0.145 −0.084 −0.070 −0.070

F Statistic (df = 2; 2066) 109.844∗∗∗ 173.252∗∗∗ 189.714∗∗∗ 189.377∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: District-election fixed effects model: relationship between the share of seats and intra-party quantities,
controlling for list length.

Dependent variable:

v1 Nc log(v1) log(Nc)

(1) (2) (3) (4)

s/M −0.174∗∗∗ 5.614∗∗∗

(0.015) (0.377)

c/M −0.317∗∗∗ 4.757∗∗∗

(0.030) (0.744)

log(s/M) −0.153∗∗∗ 0.139∗∗∗

(0.009) (0.010)

log(c/M) −0.558∗∗∗ 0.816∗∗∗

(0.069) (0.072)

District-Election F.E.

Observations 2,617 2,617 2,617 2,617

R2 0.125 0.127 0.155 0.155

Adjusted R2 −0.108 −0.105 −0.070 −0.070

F Statistic (df = 2; 2066) 147.542∗∗∗ 150.622∗∗∗ 189.714∗∗∗ 189.377∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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B Bias analysis under different model specifications

Throughout the paper, I have noted a series of possible concerns with the validity of the model tests and

assumptions. In this section, the analysis in section 6.1 is replicated with some tweaks of the theoretical

assumptions, the modelling choices and the definition of the sample. The subsections below detail the

possible alternatives to the choices behind the main results, and present the values of the slope k̂ and the

bias |β−k̂|
se when the alternative choices are implemented. To be sure, most of these are not, strictly speaking,

‘robustness checks’: they are tests of different models or of different dimensions of model performance. Future

developments in formal analysis of PLPR may make the case for their usage over the one presented.

B.1 Alternative Specification of c∗

In section 2.2.2 footnote 10, it was noted that the list-level (and the related district-level) formulas cannot

predict the values of v1 (and the related value of Nc) for non-seat-winning parties. This is because of the

assumption that the number of pertinent vote-earning candidates is endogenous to the expectations of the

number of seats a list will win, and the further assumption that parties are ‘correct’ on average about their

performance, so that E(s) = s, and c∗ = (sc)
1
2 . But what of lists that gain no seats? I suggested a possible

avenue to generalise the model to lists where s = 0 by setting c∗ = [(s + 1)c]
1
2 . This model effectively

formalises a potentially realistic assumption that, even in the least-competitive scenario, there will be at

least one non-elected candidate who had a shot at election. Furthermore, it is appealing because c∗ retains

the ‘plus one’ element of its inter-party analogue, the number of pertinent vote-earning parties, which is –

both at district level and nationwide – modelled as Ns + 1 (Shugart and Taagepera, 2017, 128; see also the

close cognate notion of ‘viable candidates’ modelled as M + 1 in Cox, 1997).

The deriving list-level equations from this tweak to the assumptions are v1 = [(s + 1)cp]−
1
4 and Nc =

[(s + 1)cp]−
3
8 . The district-level equations are v1 = [prM(M

3
8 + 1)]−

1
4 and Nc = [prM(M

3
8 + 1)]

3
8 . Note

that vs remains unchanged as (1) algebraically, the s in the formula is derived from the average of seat-

winning candidate shares, not from v1, and (2) conceptually, it is illogical to derive vs when s = 0, i.e. there

is no ‘last-eligible’ candidate in a list that gains zero seat. Relatedly, a potential drawback of this model

specification is that the predictions for v1 and vs when s = 1 differ in expectation. The table below reports

the observed slopes β and the bias relative to the expected values k̂ for the modified list- and district-level

models and the two dependent variables of interest, tested over the same sample as the main analysis. Of

course, ideally we would want to test this model on all lists, but this is not possible with the current data,

which were only collected for seat-winning lists.

Table 1: Bias diagnostics under different specifications of c∗.

List-level models District-level models
v1 Nc v1 Nc

base X (s + 1)cp (s + 1)cp prM(M
3
8 + 1) prM(M

3
8 + 1)

expected slope (k̂) -0.250 0.375 -0.250 0.375
observed slope (β) -0.245 0.365 -0.240 0.358
|β−k̂|
se 1.592 2.508 3.274 4.237
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B.2 Embeddedness-adjusted district-level model

In section 3.2 footnote 16, I noted that Shugart and Taagepera (2017) revised their expected seat share for

the first party in a district σ′
1 to account for the ‘embeddedness’ of a district in the wider political system.

They do so by introducing a k parameter which formalises the intuition that district-level competitiveness

increases when a district is part of a larger political system. Consider for instance Barbados and the UK:

both have a single-member seat plurality system, but the former has an assembly size S of 30 and the latter

has an assembly size of 650. The latter will therefore produce parties that have only realistic chances in

some districts, but nonetheless run throughout the country. This will result in higher inter-party competition

in districts embedded in larger systems than districts embedded in smaller ones: for instance, the effective

number of electoral parties in a British district is close to 3, while in Barbados is almost exactly 2. In

multi-member seats, this ‘embeddedness’ effect is consequential because it means that as the ratio between

magnitude and assembly size decreases, the number of small parties expected to win seats increases, and

therefore – for instance – the expected share of seats for the first party is smaller.

Under this revised derivation, the expected value of σ′
1 is M− k

2 . The value of k is district specific and

set to equal k = 0.5 +
0.2076 log10(

S
M )

M
1
4

. In practice, k tends to 1 as M becomes infinitesimally small relative

to the assembly size, and is exactly 0.5 when M = S. Details of its derivation are in Shugart and Taagepera

(2017, pp. 174-177). For our purposes, what matters is that from the new formula for σ′
1 it follows that

the expected number of seats for the first party is M × s1 = M1− k
2 , and the expected number of seats for

any party is M
2−k
4 . As argued in section 3.2, this is the value of s expressed as a function of institutional

variable, so that the resulting embeddedness-adjust district-level predictions are:

v1 =
(
prM

6−k
4

)− 1
4

Nc =
(
prM

6−k
4

) 3
8

vs =
(
prM3−k

)− 1
4

However, as discussed in section 7, I think that there is a more significant ‘embeddedness’ effect of

relevance for intra-party competition – i.e. the fact that lists including ‘big fish’ politicians become more

common as M
S decreases – that is not captured by k. Thus, for the sake of simplicity, I chose to present a

model that does not take into account the (presumably much smaller) bias engendered by the fact that as M
S

increases, more parties compete, and therefore individual parties have lower seat expectations. It is clear that

the ratio between district magnitude and assembly size matters, but the way in which the embeddedness

parameter k operationalises this effect is insufficient. In any case, the table below reproduces the model

bias analysis using these revised predictions of the values of the dependent variables of interest. Note that,

confusingly, k̂ (k-hat) refers to the expected intercept of the whole base, while the k noted as the dependent

variable X refers to the embeddedness parameter.
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Table 2: Bias diagnostics of embeddedness-adjusted model.

District-level models

v1 Nc vs

base X prM
6−k
4 prM

6−k
4 prM3−k

expected slope (k̂) -0.250 0.375 -0.250

observed slope (β) -0.258 0.385 -0.248
|β−k̂|
se 2.134 2.261 0.707

B.3 Symmetric Regression

As noted in section 5.1 footnote 19, in early tests of logical models, Taagepera and Shugart (Taagepera, 2007;

Shugart, Bergman and Watt, 2013) occasionally employed ‘symmetric regression’, an estimator distinct from

OLS insofar as it accounts for error-in-variables on the independent variable (see Taagepera, 2008, pp.

154-175). In a univariate regression, this is equivalent to a Simple Major Axis regression (Kimura, 1992).

The estimator has enjoyed virtually no take-up in the wider literature, and presents econometric issues

in generalising beyond two dimensions and computing clustered standard errors. In more recent work,

Taagepera and Shugart themselves reverted back to log-log OLS to test both inter- (Li and Shugart, 2016;

Shugart and Taagepera, 2017, pp. 109–113) and intra-party (Shugart and Taagepera, 2017, pp. 215–235)

models of electoral systems. The table below presents model slopes and associated measures of bias for the

symmetric regression models, computed on unclustered standard errors as per SBW replication files.

Table 3: Bias diagnostics, symmetric regression used instead of OLS

List-level List-level SBW

v1 Nc vs v1 Nc vs v1 vs

base X scp scp s4cp prM
11
8 prM

11
8 prM

5
2 c c

exp. slope -0.250 0.375 -0.250 -0.250 0.375 -0.250 -0.500 -0.750

obs. slope -0.278 0.407 -0.268 -0.268 0.392 -0.256 -0.459 -0.705
|β−k̂|
se 5.460 4.110 3.799 3.590 2.547 0.373 8.603 3.711
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B.4 Drop-One-Country Subsamples

As discussed in section 5.1 footnote 19, I repeated the model bias analysis on reduced samples obtained

dropping alternately one of the nine countries under consideration to assuage concerns that the results are

driven by country-specific factors. Sample dependency is not a major concern for the vs and Nc models:

especially in their district-level version they produce consistently coefficients close to the expectation k̂. The

models for vs – which, as noted in section 3.1.3 rest on shakier theoretical ground – do however present on

occasion fairly large values of the bias indicator.

List-level District-level

Country Dropped variable v1 Nc vs v1 Nc vs

base X scp scp s4cp prM
11
8 prM

11
8 prM

5
2

exp. slope k̂ -0.250 0.375 -0.250 -0.250 0.375 -0.250

Belgium obs. slope -0.276 0.407 -0.265 -0.264 0.392 -0.238
|β−k̂|
se

5.668 5.508 7.307 3.650 3.361 3.981

Cyprus obs. slope -0.261 0.389 -0.262 -0.252 0.378 -0.237
|β−k̂|
se

2.621 2.773 6.721 0.521 0.563 4.500

Czechia obs. slope -0.254 0.381 -0.259 -0.245 0.369 -0.234
|β−k̂|
se

1.048 1.142 4.982 1.359 1.294 5.367

Estonia obs. slope -0.262 0.390 -0.261 -0.253 0.378 -0.237
|β−k̂|
se

2.944 2.881 6.428 0.915 0.691 4.607

Finland obs. slope -0.256 0.382 -0.259 -0.247 0.371 -0.235
|β−k̂|
se

1.468 1.475 5.240 0.770 0.918 5.352

Italy obs. slope -0.271 0.407 -0.283 -0.266 0.400 -0.262
|β−k̂|
se

3.132 3.842 15.117 3.022 3.928 3.682

Peru obs. slope -0.261 0.389 -0.262 -0.252 0.378 -0.237
|β−k̂|
se

2.609 2.766 6.390 0.509 0.555 4.729

Poland obs. slope -0.261 0.385 -0.255 -0.252 0.373 -0.231
|β−k̂|
se

2.483 1.852 3.005 0.460 0.521 6.284

Slovakia obs. slope -0.266 0.396 -0.261 -0.256 0.381 -0.234
|β−k̂|
se

4.407 4.526 6.479 1.622 1.486 7.077
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C The Nemčok-Šedo Dataset

I am grateful to Dr Miroslav Nemčok for sharing with me a dataset of electoral system quantities for 560

elections in 40 countries that employ simple electoral systems, which expands on that used by Taagepera

(2007) for testing the SPM. Table 1 details the number of election and time range covered, as well as minima

and maxima of M (mean district magnitude), S (assembly size), NS (effective number of parties) and σ1

(seat share of the largest party), grouped by country.

Table 1: The Nemčok-Šedo dataset of inter-party quantities: descriptive statistics.

Country # elections Time Range M (min-max) S (min-max) NS (min-max) σ1 (min-max)

Armenia 2 2007–2012 3.2 131 2.7–3.4 0.49–0.53
Australia 27 1946–2013 1 74–150 2.2–3.2 0.39–0.6
Austria 20 1949–2013 4.3–20.3 165–183 2.1–4.6 0.28–0.52
Belgium 22 1946–2014 6.7–13.6 150–212 2.5–10.1 0.15–0.51
Bulgaria 9 1991–2017 7.7 240 2.4–5.1 0.34–0.57
Canada 23 1945–2015 1 245–338 1.5–3.2 0.4–0.78
Croatia 6 2000–2016 12.6–12.8 151–153 2.7–3.5 0.39–0.53
Cyprus 5 1996–2016 9.3 56 3.5–4.5 0.32–0.36
Czech Republic 8 1990–2013 14.3–25 200 2.3–5.6 0.25–0.62
Denmark 27 1945–2015 5.9–14.9 148–179 3.7–7.2 0.26–0.42
Estonia 7 1992–2015 8.4–9.2 101 3.8–5.9 0.28–0.41
Finland 20 1945–2015 12.5–15.4 200 4.6–5.8 0.22–0.32
France 17 1946–2012 1–4.4 475–618 1.8–6.2 0.2–0.75
Iceland 22 1946–2016 1.9–10.5 52–63 3.2–5.3 0.29–0.42
Ireland 20 1948–2016 3.4–4 144–166 2.4–4.6 0.32–0.57
Israel 20 1949–2015 120 120 3.1–8.7 0.22–0.47
Italy 12 1946–1992 17.4–19.7 556–630 2.6–5.7 0.33–0.53
Japan 12 1960–1993 3.9–4 467–512 2–4.1 0.44–0.64
Latvia 6 1998–2014 20 100 3.9–6 0.23–0.33
Luxembourg 16 1945–2013 12.8–16 51–64 2.7–4.3 0.31–0.5
Macedonia 8 1990–2016 1–20 120–123 1.9–6 0.32–0.72
Malta 6 1996–2017 5–5.3 65–69 2–2 0.51–0.57
Moldova 7 1994–2010 101–104 101–104 1.8–3.4 0.4–0.7
Montenegro 9 1990–2012 5.1–85 71–125 2.1–3.2 0.47–0.66
Netherlands 22 1946–2017 100–150 100–150 3.5–8.1 0.21–0.36
New Zealand 17 1946–1993 1 80–99 1.8–2.2 0.51–0.69
Norway 18 1945–2013 5.2–8.9 150–169 2.7–5.4 0.26–0.57
Poland 8 1991–2015 8.8–12.4 460 2.7–10.9 0.13–0.51
Portugal 15 1975–2015 10–11.9 230–263 2.2–4.2 0.35–0.59
Romania 5 1990–2004 7.9–9.7 332–396 2.2–4.8 0.34–0.66
Serbia 11 1990–2016 1–250 250 1.6–4.9 0.29–0.78
Slovakia 9 1990–2016 37.5–150 150 2.9–6.1 0.24–0.55
Slovenia 8 1990–2014 5.7–11.2 80–90 4.1–8.2 0.17–0.4
South Africa 5 1994–2014 44.4 400 2–2.3 0.62–0.7
Spain 13 1977–2016 6.7 350 2.3–4.1 0.35–0.58
Sweden 21 1948–2014 8.2–12.5 230–350 2.8–5 0.32–0.54
Switzerland 18 1947–2015 7.7–8 194–200 4.7–6.8 0.22–0.32
Turkey 18 1950–2015 4.2–9.1 400–610 1.2–4.9 0.25–0.92
Ukraine 3 1994–2007 1–450 450 3.1–3.4 0.19–0.41
United Kingdom 20 1945–2017 1 625–659 2–2.6 0.47–0.63
United States 18 1948–2016 1 435–437 1.8–2 0.51–0.68
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D Precision analysis for vs predictions

As noted in the discussion of methodological choices(footnote 22 in section 5.2), the analysis presented in

section 6.2 is restricted to v1 and Nc insofar as these quantities have intuitive inter-party analogues in σ1 and

NS . Diagnostics of deviation-from-prediction can however be conducted on the vs list-level and district-level

models as well. Consistently with the main analysis, the index d is computed as log10

(
vs

(s4cp)−1/4

)
for the

list-level model and as log10

(
ṽs

(prM
5
2 )−1/4

)
for the district-level model tested on district medians. Table 1

presents median and mean values of absolute discrepancy, with the associated factors of error, and the share

of observations that fall withing the ‘tolerable error’ band. Figure 1 plots the values of the index d against

the base products (s4cp)−
1
4 and (prM

5
2 )−

1
4 .

Figure 1: Comparison of deviation from prediction of the district-level model for the means values of the dependent
variables: v̄1, N̄c, and v̄s . Dashed lines represent values of d corresponding to values where the observed value is
either twice or half the prediction.

Table 1: Summary indicators of deviation from prediction: models for vs and ṽs.

median of |d| mean of |d| share d < log10(2)
value |d| % error value |d| % error and d > log10(0.5)

List-level model 0.122 32.5% 0.147 40.2% 90.6%
District-level model 0.121 32.2% 0.152 42% 87.3%
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E Precision analysis for district means

Figure 1: Comparison of deviation from prediction of the district-level model for the means values of the dependent
variables: v̄1, N̄c, and v̄s . Dashed lines represent values of d corresponding to values where the observed value is
either twice or half the prediction.

Precision diagnostics for the district-level model may also be computed on district-level means of v1, Nc

and vs, as opposed to the median values presented in the main analysis and in section D of the Appendix.

Figure 1 plots the distribution of the values of d against the base products prM
11
8 and prM

5
2 . Diagnostics

analogous to those presented in the main analysis are presented in table 1.
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Table 1: Summary indicators of deviation from prediction: models for v̄1, N̄c and v̄s.

median of |d| mean of |d| share d < log10(2)

value |d| % error value |d| % error and d > log10(0.5)

ṽ1 0.081 20.4% 0.098 25.3% 97.8%

Ñc 0.109 28.7% 0.126 33.6% 95.8%

ṽs 0.113 29.6% 0.142 38.8% 88.6%
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