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The Plan for today
‣ Statistics:


‣ Recap: Hypothesis Tests and Inferential Statistics.


‣ Simple (Bivariate) Linear Regression. 


‣ Coding in R:  


‣ Merging Dataframes.


‣ Simple (Bivariate) Linear Regression.



Is there a significant difference in religiosity (0-10 
scale) between men and women?

> t.test(data$religiosity ~ data$gender)


	 Welch Two Sample t-test


data:  data$religiosity by data$gender

t = -3.3561, df = 309.28, p-value = 0.0008891

alternative hypothesis: true difference in means between 
group Men and group Women is not equal to 0

95 percent confidence interval:

 -0.8637381 -0.2252634

sample estimates:

  mean in group Men mean in group Women 

           4.994440            5.538941 



Is there a significant difference in number of children between people 
born in Austria and people born abroad?

> t.test(data$number_of_children ~ data$origin)

Welch Two Sample t-test


data:  data$number_of_children by data$origin

t = -0.45917, df = 129.11, p-value = 0.6469

alternative hypothesis: true difference in means between group ‘Born 
Abroad’ and group ‘Born in Austria’ is not equal to 0

95 percent confidence interval:

 -0.4488909  0.2797818

sample estimates:

    mean in group ‘Born Abroad’ mean in group ‘Born in Austria’ 

                       2.090909                        2.175464 



In a medical trial for a new flu vaccine, is the proportion of participants who 
received the vaccine and then got the flu significantly different from the 

proportion who received a placebo and then got the flu?  

> prop.test(x = c(vaccine_gotflu, placebo_gotflu),

+           n = c(vaccine_samplesize, placebo_samplesize))


	 2-sample test for equality of proportions with continuity correction


data:  c(vaccine_gotflu, placebo_gotflu) out of c(vaccine_samplesize, 
placebo_samplesize)

X-squared = 59.891, df = 1, p-value = 1.003e-14

alternative hypothesis: two.sided

95 percent confidence interval:

 -0.11436416 -0.06949298

sample estimates:

    prop 1     prop 2 

0.02057143 0.11250000 



Linear Regression
‣ Today: Bivariate (aka Simple) Linear regression, with two numerical 

variables:  (independent variable) and  (dependent variable). 


‣ Goal: prediction. What’s our best guess of  (“the value of  for 
observation ”) if we know  (“the value of  for observation ”)?


‣ Simplest possible way to relate two variables: a line. You may 
remember from school the equation for a line: .


‣ Same here, but with Greek letters and indexes (optional): 

X Y

Yi Y
i Xi X i

y = mx + n

Yi = α + βXi



Linear Regression



‣ The problem: not all the data is going to be on 
the line. The world is messy. 


‣ For any ‘sensible’ line we draw, some values of 
 will be above the line, others below the line.


‣ So we model the line with some error , which 
may differ for each observation: 


Yi = α + βXi

Y

ε

Yi = α + βXi + εi



Linear Regression



‣ This is a model of the process that generates :  is a function of  plus 
some random error. It’s a mathematical representation of reality. 


‣  is the intercept parameter: the predicted value of  when 


‣  is the slope parameter: the predicted change in  associated with a one-
unit increase in . The slope is usually what we’re most interested in. 


‣ This is a linear model: by assumption, for every one-unit increase in , we 
will see a corresponding increase in  by  amount. 

Yi = α + βXi + εi

Y Y X

α Y X = 0.

β Y
X

X
Y β






‣  and  are parameters in our model: unknown features of the 
data-generating process, which we do not directly observe 
because our data comes with some random error. 


‣ We actually estimate  and  from our observed data, by figuring 
out the “best” line to fit through our data:


Yi = α + βXi + εi

α β

α̂ ̂β

̂Yi = α̂ + ̂βXi

Linear Regression

Predicted (or 
“fitted”) values of  Y

Estimates for the 
intercept and slope



Linear Regression
‣ How do we pick the “best” line ? 


‣ Ordinary Least Squares: we choose  and  so that they minimise the 
sum of squared residuals, where the residuals  are the difference 
between the predicted values of  and the observed values : 





‣ You can solve for  and  with calculus (but we’ll let R do it for us!) 

̂Yi = α̂ + ̂βXi

α̂ ̂β
̂ε

̂Y Y

min
α̂, ̂β

n

∑
i=1

( ̂εi)2 = min
α̂, ̂β

n

∑
i=1

(Yi − Ŷi)2 = min
α̂, ̂β

n

∑
i=1

(Yi − α̂ − ̂βXi)2

α̂ ̂β



Visually…
Of all possible lines, 
we pick this one…



Visually…
…because if we take all the 

difference between the observed 
values of  (in black) and the 
predicted values  (in red)…

Y
̂Y

…Then we square these 
differences (the residuals), so 
they all become positive…

…and we sum them all up, this 
specific line returns the minimum 

sum of squared residuals.



Visually…

The intercept  is the 
predicted value of  when  

is zero. In this case, about 35.

α̂
Y X



Visually…

The slope  is the predicted 
change in  as we increase 

 by 1. In this case, it’s 1.25 

̂β
Y

X



Visually…

Because we’re fitting a line, the 
predicted increase in  associated 
with a one-unit increase in  is the 

same (  = 1.25) everywhere…

Y
X

̂β

…so, for instance, increasing  
by 10 is associated with a 12.5 

increase in .

X

Y



Visually…

The regression line always runs 
through the mean of  and the 

mean of 
X

Y

Mean 
of X

Mean 
of Y



Visually…

If we take all the 
residuals … (Yi − Ŷi)



Visually…

And we plot them…



Visually…

Their mean will 
always be zero.



Linear Regression in R
‣ Example: Brexit data from earlier weeks. What’s the expected 

change in “Leave vote” in a local authority associated with a one-unit 
increase in “Percentage of residents with a university degree”? 

Coefficients:

               Estimate Std. Error t value Pr(>|t|)    

(Intercept)    81.38653    1.24070   65.60   <2e-16 ***

percent_degree -1.04909    0.04432  -23.67   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

̂β
α̂



Linear Regression in R
‣ Example: What’s the predicted change in life satisfaction (0-10 

scale) associated with a one-unit increase in religiosity (0-10 scale)?

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)   6.5526     0.2173  30.150   <2e-16 ***

## religiosity   0.1053     0.0471   2.236   0.0262 *  

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

̂β
α̂



Goodness of fit ( )R2

‣ Normally, the thing we’re most interested in when we fit a regression 
is the slope coefficient.


‣ Interpretation: “  represents the predicted change in  associated 
with a one-unit increase in ”.


‣ It comes with its measures of uncertainty (week 13) and under very 
restrictive assumptions, it may be interpreted as an effect (week 14). 


‣ However, we may also be interested in finding out how well our 
linear model explains variation in . 

̂β Y
X

Y



Goodness of fit ( )R2

‣ The measure of “goodness of 
fit” is the .


‣ Suppose we have fitted our 
regression line for this model:


R2

Leave Votei = α + β(Pct. Degreesi) + εi



Goodness of fit ( )R2

‣ Logic of the : 


‣ Compare the unexplained variation in  after fitting the line with 
the unexplained variation in  before fitting the line


‣ Before fitting the line: best guess for any value of  is the mean .


‣ After fitting the line: best guess for  is the predicted value .

R2

Y
Y

Y Ȳ

Yi
̂Yi



Goodness of fit ( )R2



Goodness of fit ( )R2

‣ The  compares the Sum of Squared Residuals (unexplained 
variation after fitting the line, SSR), with the Sum of Total Squared 
(unexplained variation before fitting the line, SST)





‣ Interpretation: “the model explain of the variance in .

R2

R2 = 1 −
SSR
SST

= 1 −
∑n

i=1 (Yi − ̂Y)2

∑n
i=1 (Yi − Ȳ)2

R2 × 100 % Y



 in RR2

Call:

lm(formula = percent_leave ~ percent_degree, data = brexit)


Residuals:

    Min      1Q  Median      3Q     Max 

-26.067  -1.911   1.724   4.345  15.082 


Coefficients:

               Estimate Std. Error t value Pr(>|t|)    

(Intercept)    81.38653    1.24070   65.60   <2e-16 ***

percent_degree -1.04909    0.04432  -23.67   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


Residual standard error: 6.62 on 378 degrees of freedom

Multiple R-squared:  0.5971,	Adjusted R-squared:  0.5961 

F-statistic: 560.3 on 1 and 378 DF,  p-value: < 2.2e-16

R2



Good to know…
‣ Connection with other measures of correlation (from week 6)


‣ In a bivariate (simple) linear regression…


‣ …the  is the square of Pearson’s … 


‣ …and the slope coefficient 


‣ But linear regression is more widely used because it can go beyond 
describing bivariate relationships: it can give us predictions for  as a 
function of more than one  variable (next week).  

R2 r

̂β =
Cov(X, Y)

Var(X)

Y
X



Summing Up…
‣ Linear regression allows us to make predictions about a dependent 

variable , based on the known values of the independent variable .


‣ Line of best fit minimises the “sum of squared residuals”. It is 
described by two values: the intercept ( ) and slope ( ) coefficients.


‣ We’re normally interested in interpreting : it’s the predicted change 
in  associated with a one-unit increase in . 


‣ We also get the : it’s the percentage of variance in  explained by 
the linear model. Your goal in life is not to maximise the .

Y X

α̂ ̂β
̂β

Y X

R2 Y
R2


