

BAK3: Introduction to Quantitative Methods

Week 11: Bivariate Linear Regression

Leonardo Carella

The Plan for today

- ▶ Statistics:
 - ▶ Recap: Hypothesis Tests and Inferential Statistics.
 - ▶ Simple (Bivariate) **Linear Regression**.
- ▶ Coding in R:
 - ▶ Merging Dataframes.
 - ▶ Simple (Bivariate) **Linear Regression**.

```
> t.test(data$religiosity ~ data$gender)
```

Welch Two Sample t-test

data: data\$religiosity by data\$gender
t = -3.3561, df = 309.28, p-value = 0.0008891

alternative hypothesis: true difference in means between
group Men and group Women is not equal to 0

95 percent confidence interval:

-0.8637381 -0.2252634

sample estimates:

mean in group Men	mean in group Women
4.994440	5.538941

**Is there a significant difference in religiosity (0-10
scale) between men and women?**

```
> t.test(data$number_of_children ~ data$origin)
Welch Two Sample t-test

data: data$number_of_children by data$origin
t = -0.45917, df = 129.11, p-value = 0.6469
alternative hypothesis: true difference in means between group 'Born
Abroad' and group 'Born in Austria' is not equal to 0
95 percent confidence interval:
-0.4488909 0.2797818
sample estimates:
mean in group 'Born Abroad' mean in group 'Born in Austria'
2.090909 2.175464
```

**Is there a significant difference in number of children between people
born in Austria and people born abroad?**

```
> prop.test(x = c(vaccine_gotflu, placebo_gotflu),  
+            n = c(vaccine_samplesize, placebo_samplesize))  
  
 2-sample test for equality of proportions with continuity correction  
  
data: c(vaccine_gotflu, placebo_gotflu) out of c(vaccine_samplesize,  
placebo_samplesize)  
X-squared = 59.891, df = 1, p-value = 1.003e-14  
alternative hypothesis: two.sided  
95 percent confidence interval:  
 -0.11436416 -0.06949298  
sample estimates:  
    prop 1    prop 2  
0.02057143 0.11250000
```

In a medical trial for a new flu vaccine, is the proportion of participants who received the vaccine and then got the flu significantly different from the proportion who received a placebo and then got the flu?

Linear Regression

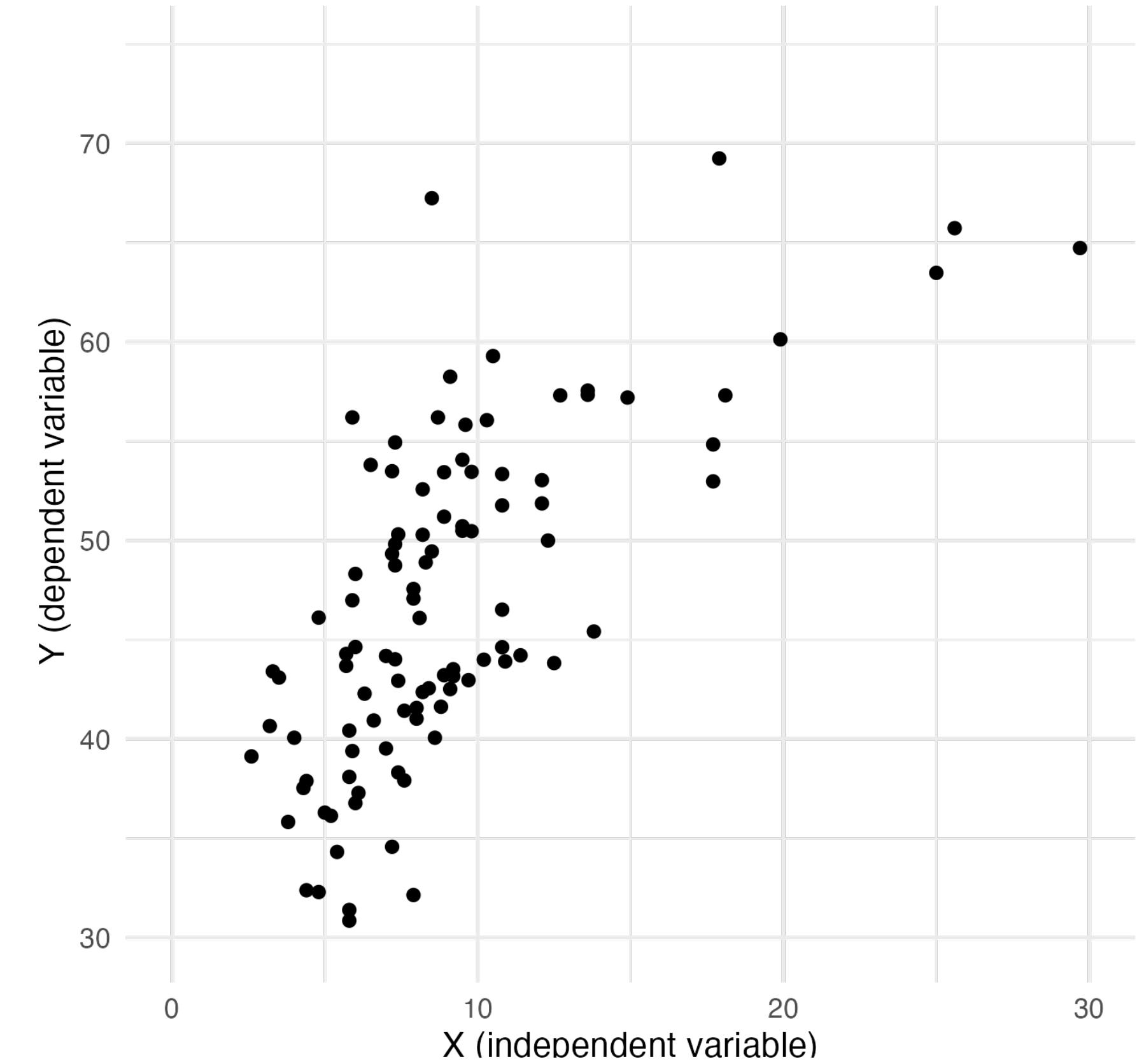
- ▶ Today: Bivariate (aka Simple) Linear regression, with two **numerical variables**: X (independent variable) and Y (dependent variable).
- ▶ Goal: prediction. What's our **best guess** of Y_i ("the value of Y for observation i ") if we know X_i ("the value of X for observation i ")?
- ▶ Simplest possible way to relate two variables: **a line**. You may remember from school the equation for a line: $y = mx + n$.
- ▶ Same here, but with Greek letters and indexes (optional): $Y_i = \alpha + \beta X_i$

Linear Regression

$$Y_i = \alpha + \beta X_i$$

- ▶ The problem: not all the data is going to be on the line. The world is messy.
- ▶ For any ‘sensible’ line we draw, some values of Y will be above the line, others below the line.
- ▶ So we model the line with some error ε , which may differ for each observation:

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$



Linear Regression

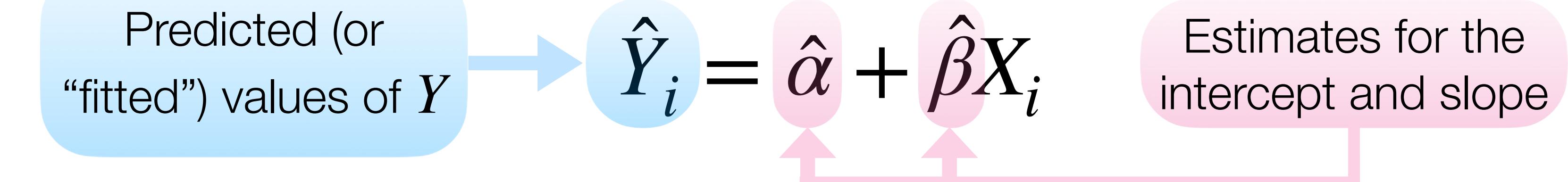
$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- ▶ This is a **model** of the process that generates Y : Y is a function of X plus some random error. It's a mathematical representation of reality.
- ▶ α is the **intercept** parameter: the predicted value of Y when $X = 0$.
- ▶ β is the **slope** parameter: the predicted change in Y associated with a one-unit increase in X . The slope is usually what we're most interested in.
- ▶ This is a **linear** model: by assumption, for **every** one-unit increase in X , we will see a corresponding increase in Y by β amount.

Linear Regression

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- ▶ α and β are parameters in our model: unknown features of the data-generating process, which we do not directly observe because our data comes with some random error.
- ▶ We actually **estimate** $\hat{\alpha}$ and $\hat{\beta}$ from our observed data, by figuring out the “best” line to fit through our data:



The diagram shows the linear regression equation $\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i$. A blue callout box on the left points to \hat{Y}_i and contains the text: "Predicted (or “fitted”) values of Y ". A pink callout box on the right points to the terms $\hat{\alpha}$ and $\hat{\beta}X_i$ and contains the text: "Estimates for the intercept and slope". Two pink arrows point from the text in the pink box up to the corresponding terms in the equation.

Linear Regression

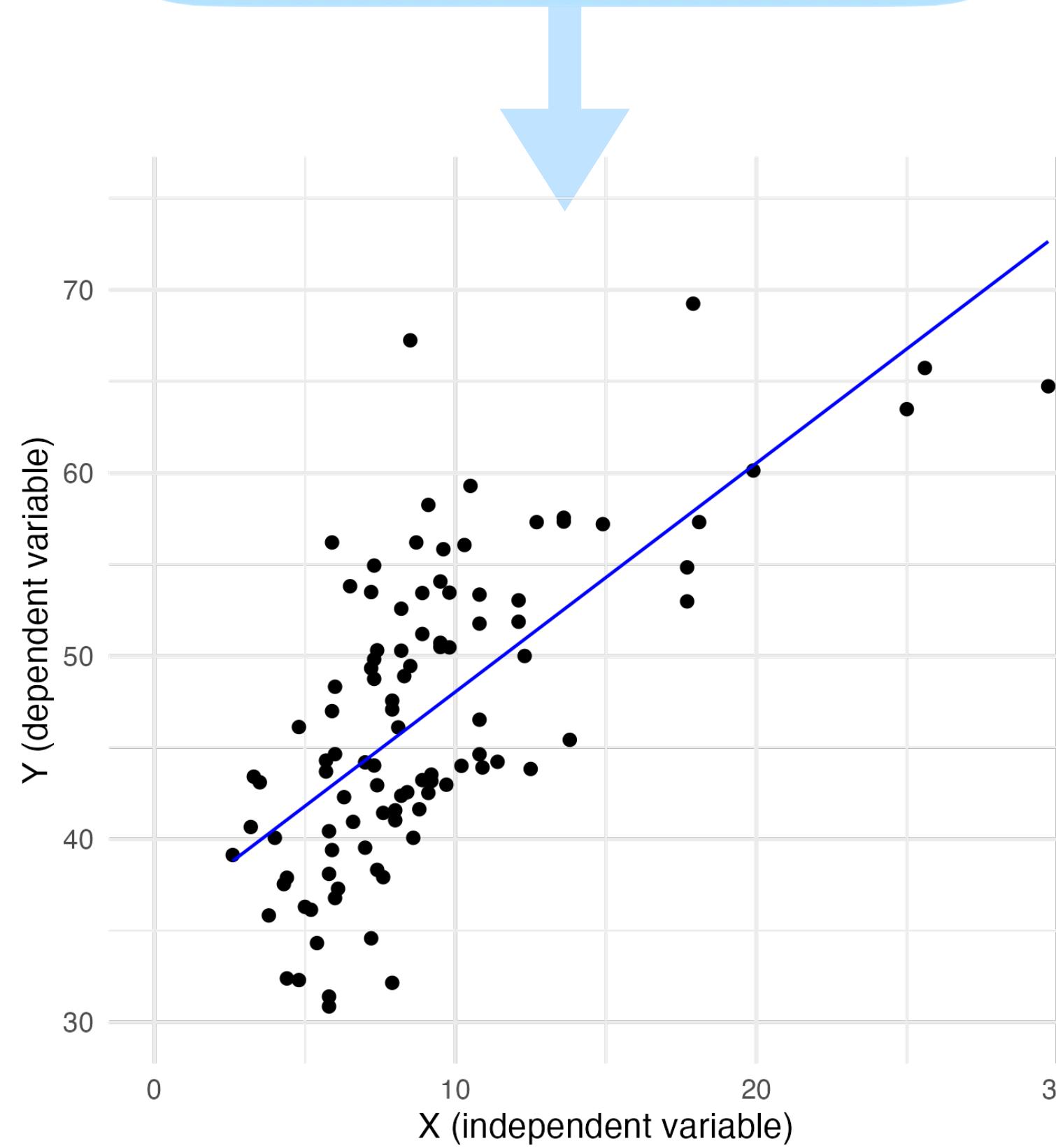
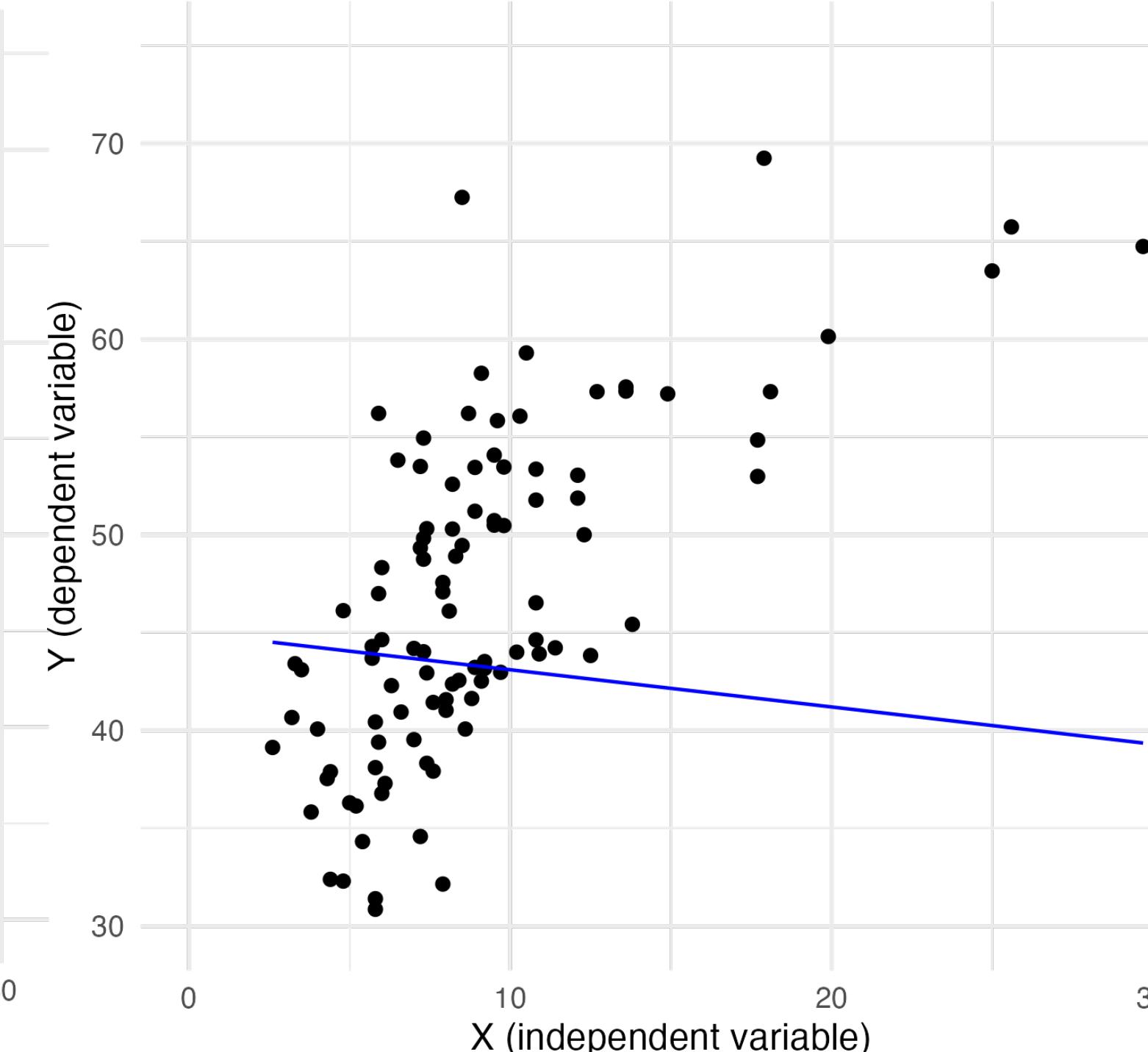
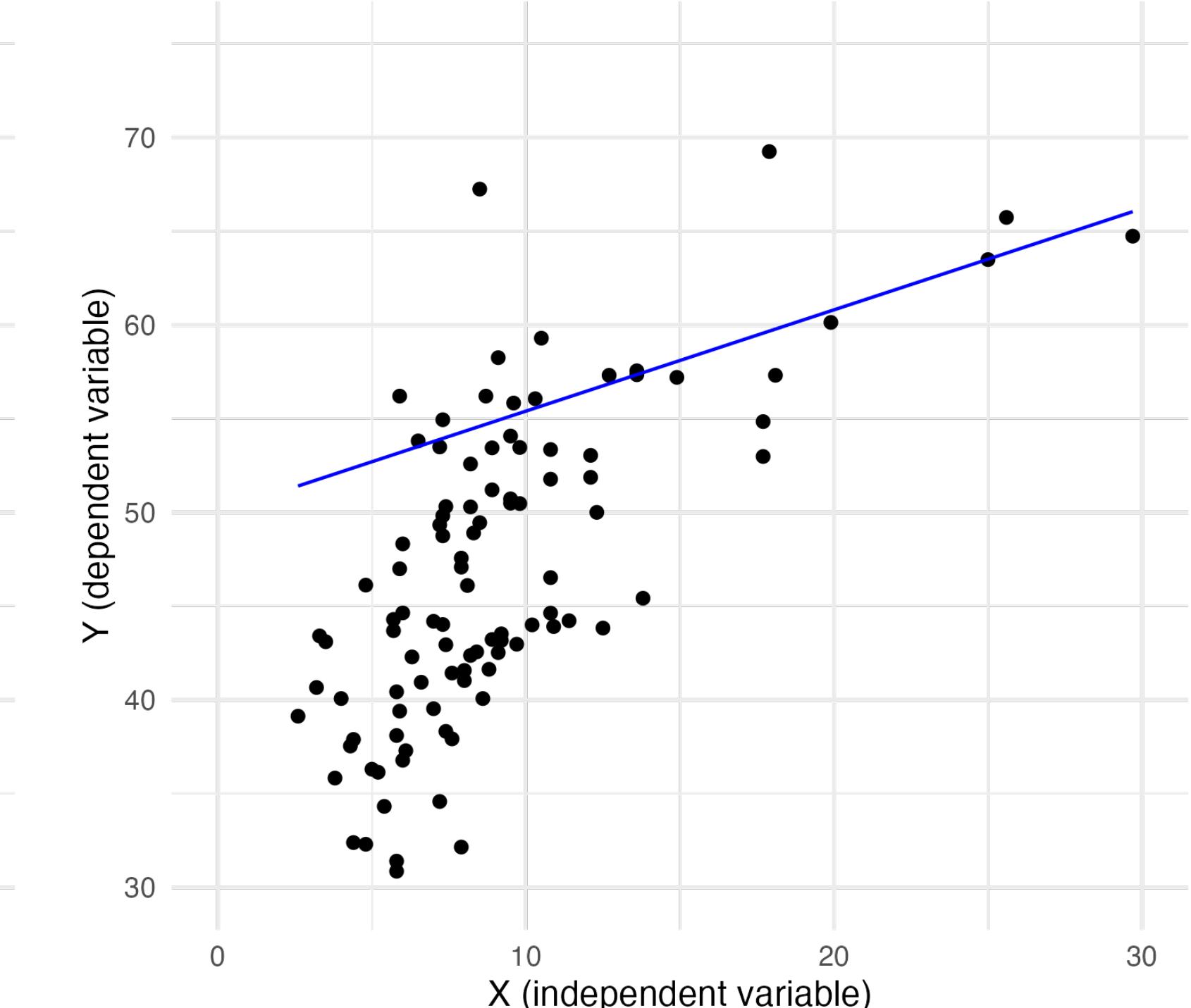
- ▶ How do we pick the “best” line $\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i$?
- ▶ Ordinary Least Squares: we choose $\hat{\alpha}$ and $\hat{\beta}$ so that they minimise the **sum of squared residuals**, where the residuals $\hat{\epsilon}$ are the difference between the predicted values of \hat{Y} and the observed values Y :

$$\min_{\hat{\alpha}, \hat{\beta}} \sum_{i=1}^n (\hat{\epsilon}_i)^2 = \min_{\hat{\alpha}, \hat{\beta}} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = \min_{\hat{\alpha}, \hat{\beta}} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta}X_i)^2$$

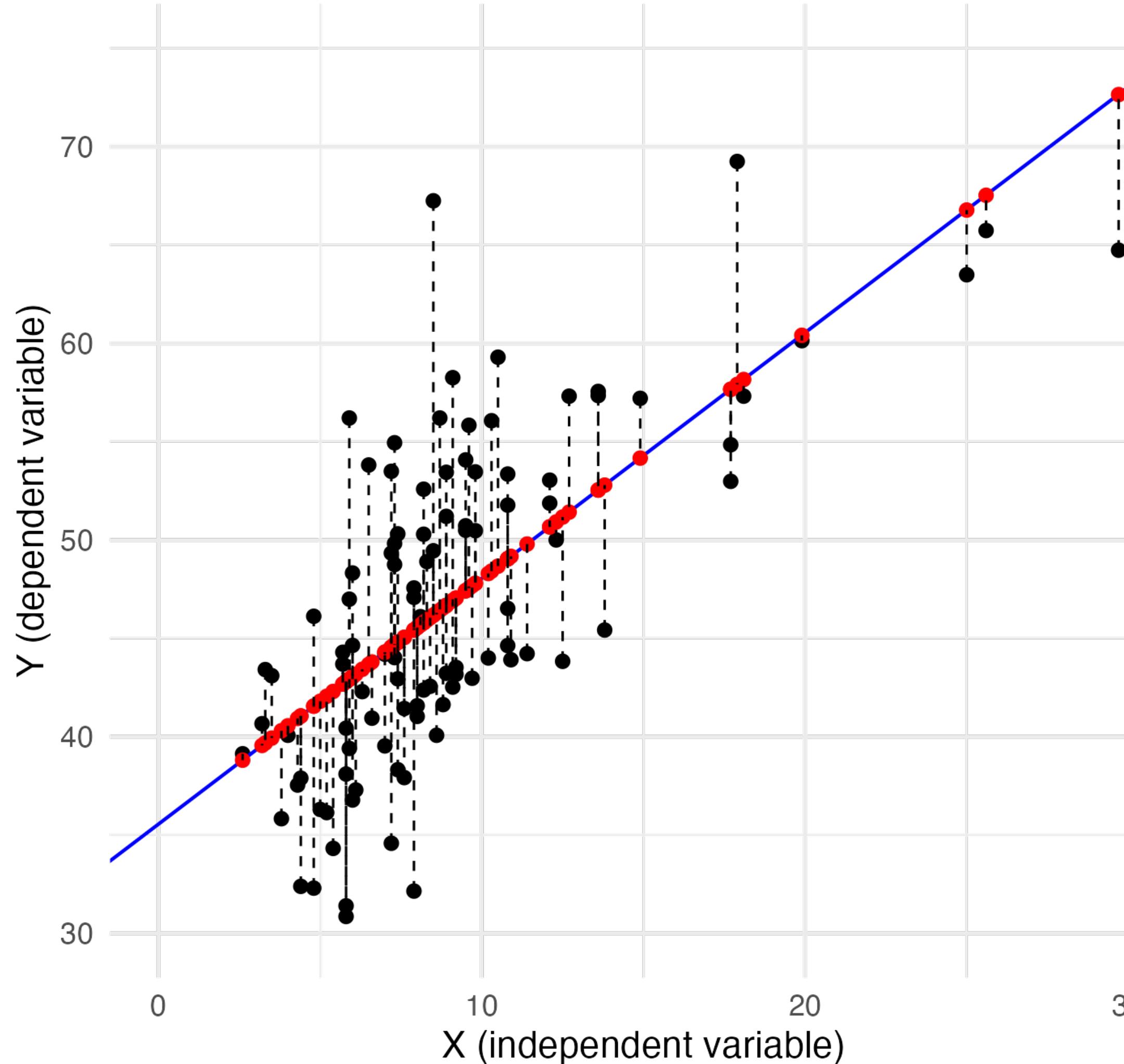
- ▶ You can solve for $\hat{\alpha}$ and $\hat{\beta}$ with calculus (but we’ll let R do it for us!)

Visually...

Of all possible lines,
we pick this one...



Visually...

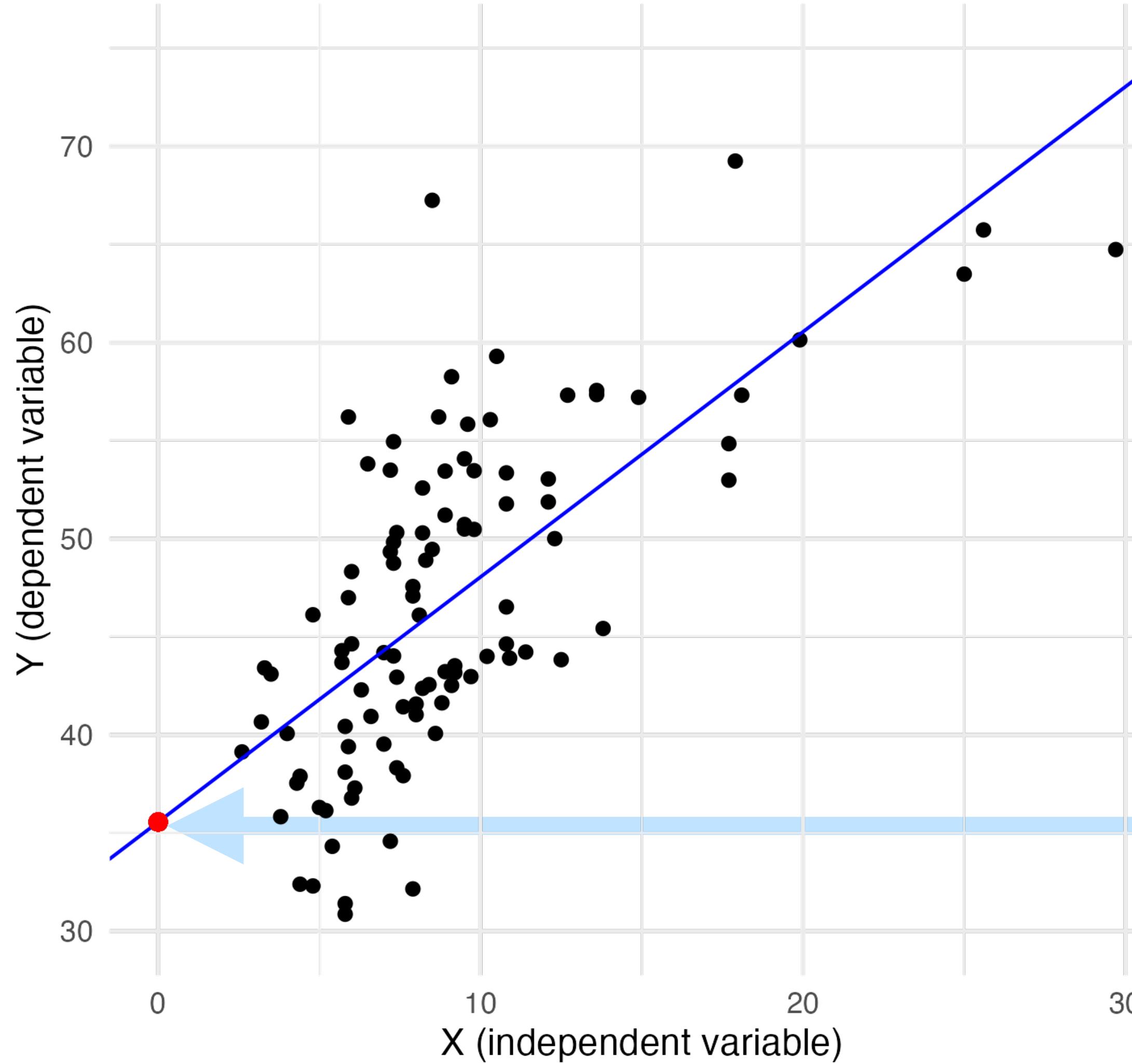


...because if we take all the difference between the observed values of Y (in black) and the predicted values \hat{Y} (in red)...

...Then we **square** these differences (the residuals), so they all become positive...

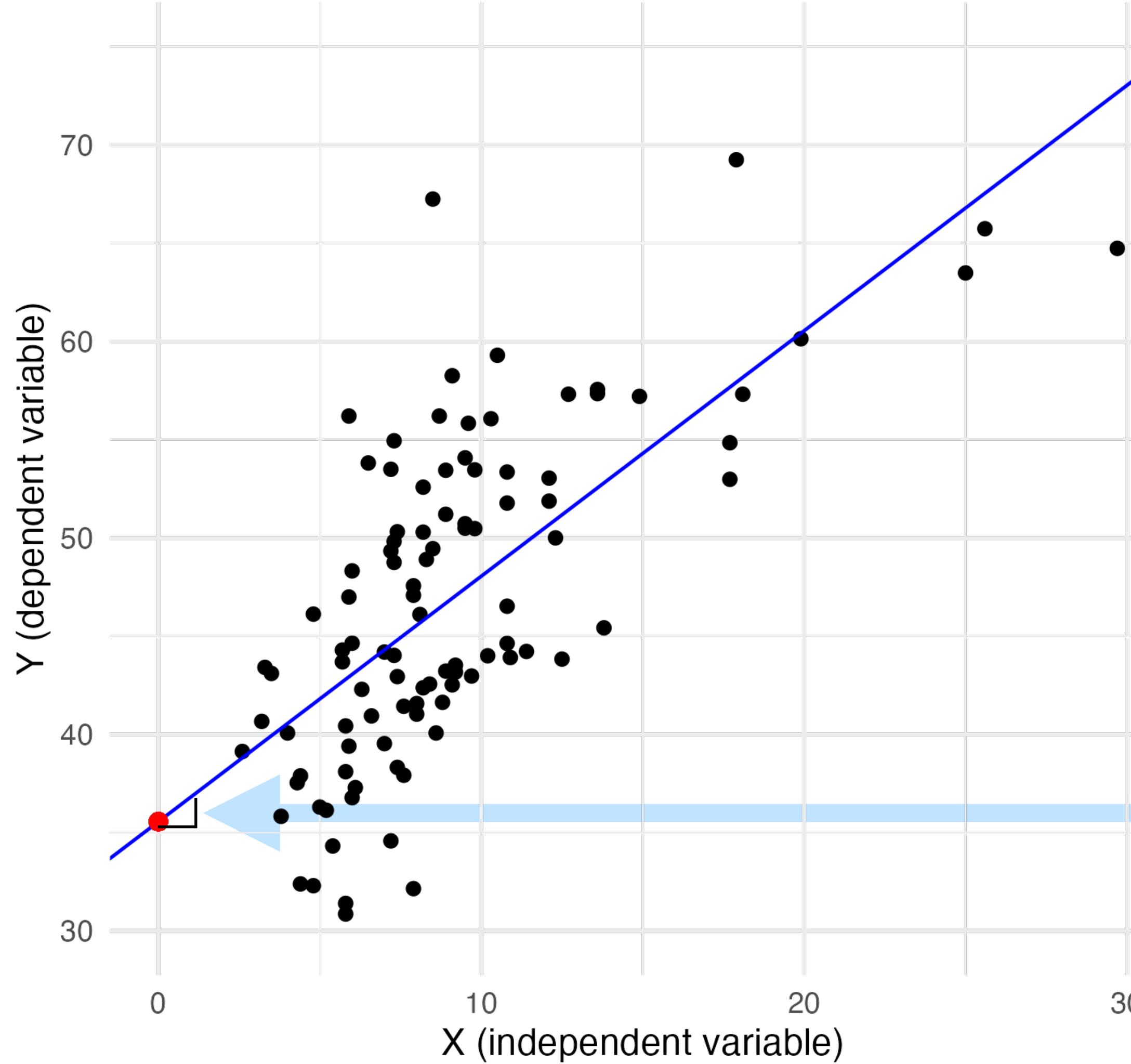
...and we sum them all up, this specific line returns the **minimum sum of squared residuals**.

Visually...



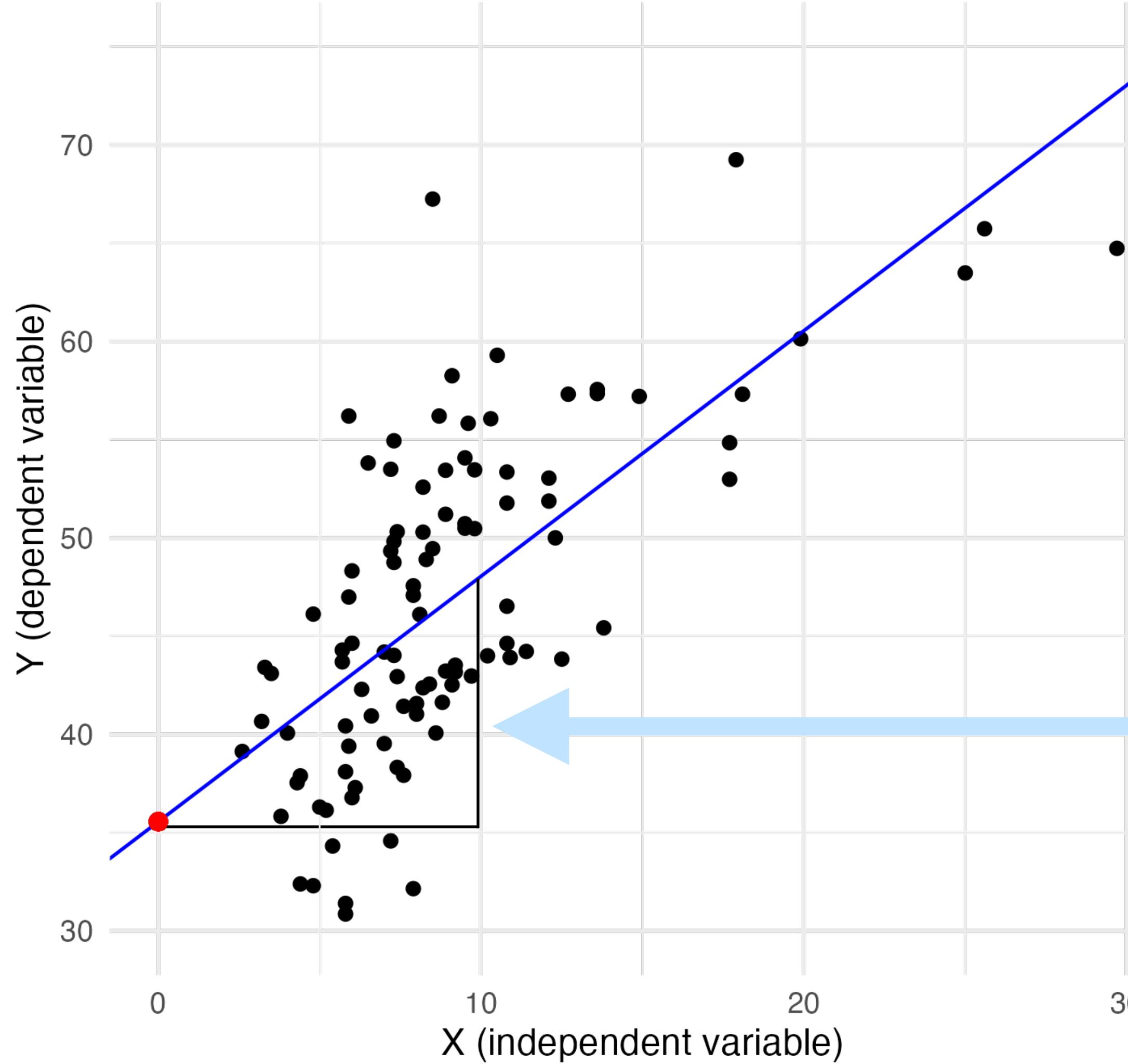
The intercept $\hat{\alpha}$ is the predicted value of Y when X is zero. In this case, about 35.

Visually...



The slope $\hat{\beta}$ is the predicted change in Y as we increase X by 1. In this case, it's 1.25

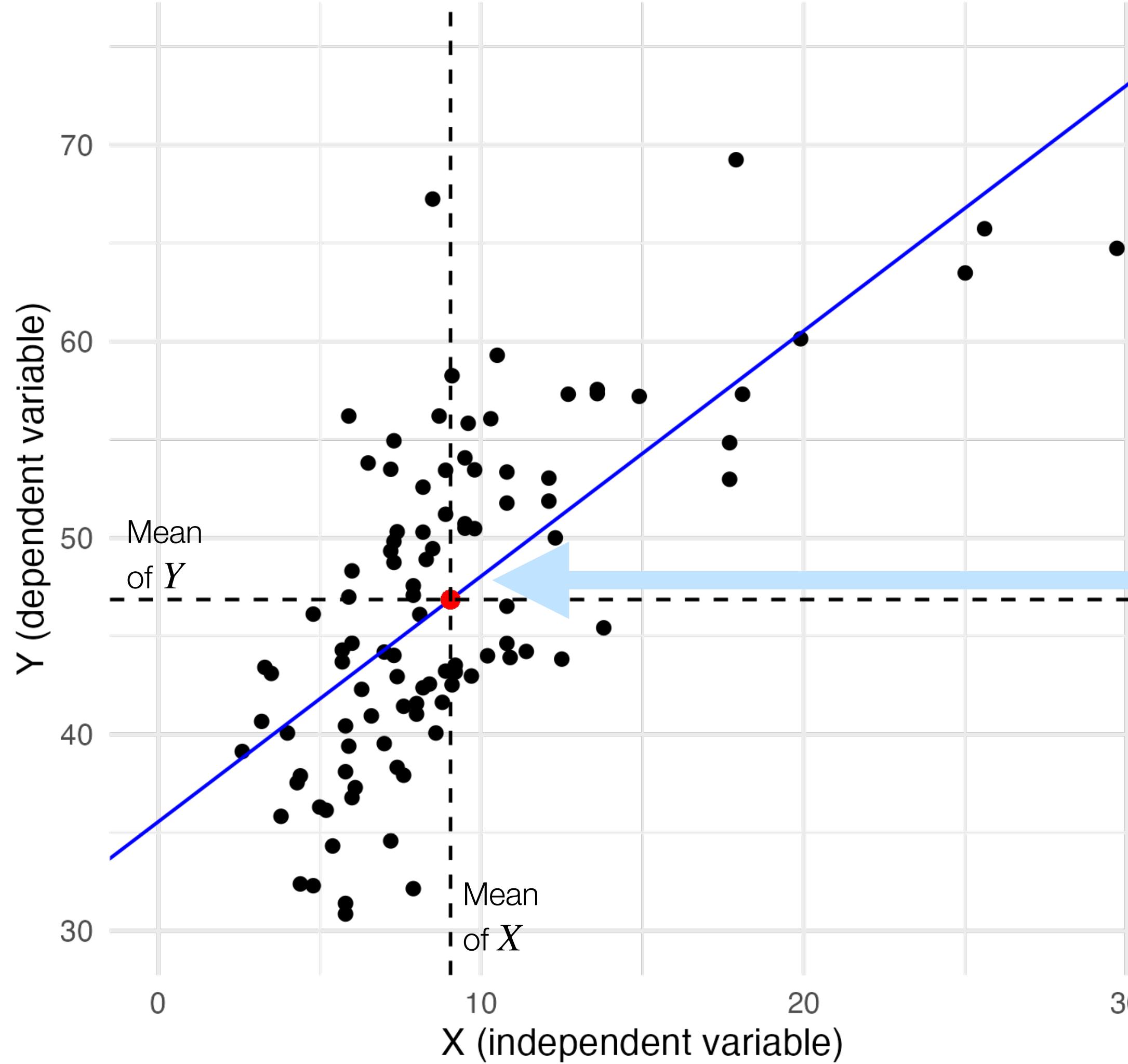
Visually...



Because we're fitting a line, the predicted increase in Y associated with a one-unit increase in X is the same ($\hat{\beta} = 1.25$) everywhere...

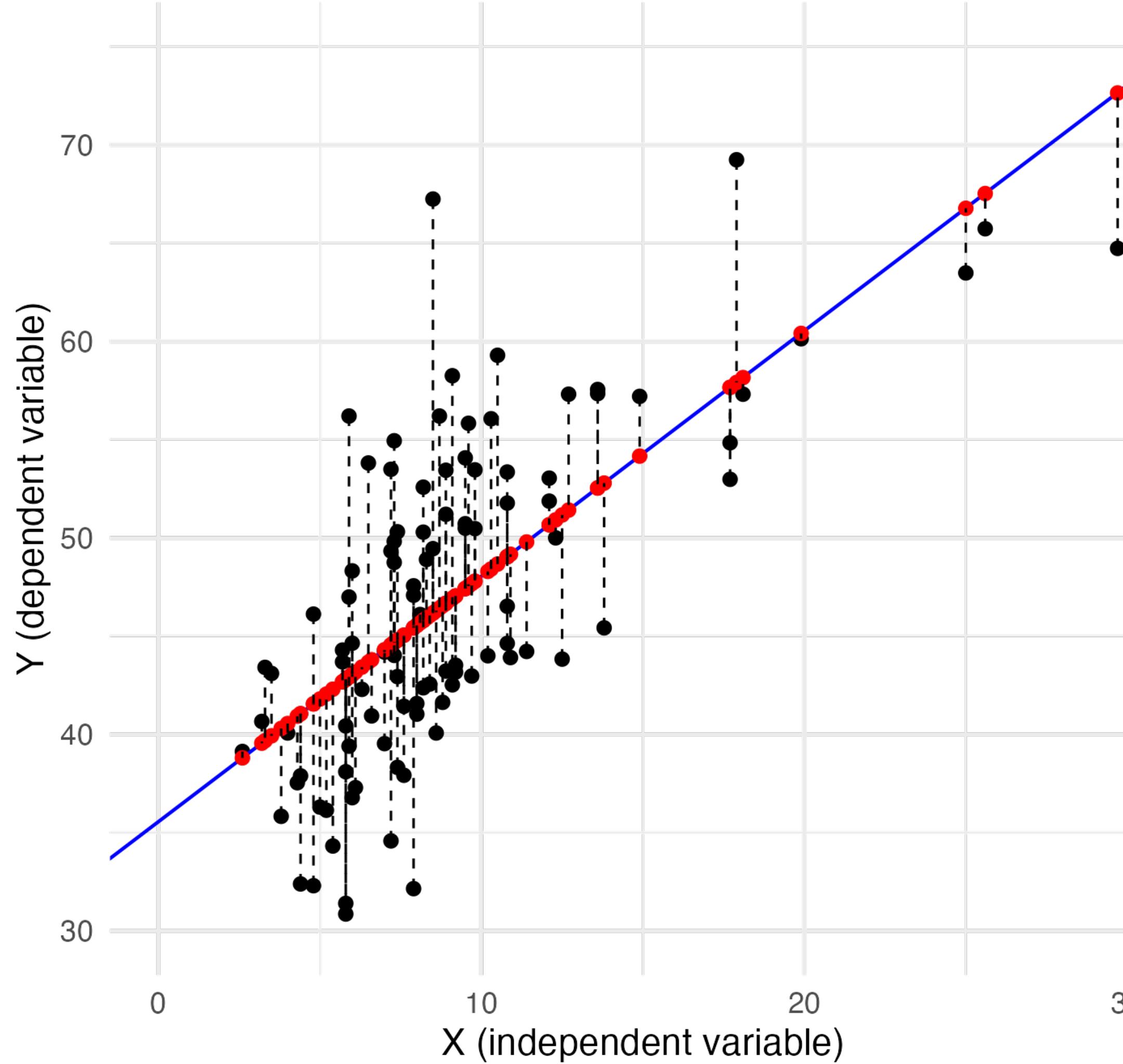
...so, for instance, increasing X by 10 is associated with a 12.5 increase in Y .

Visually...



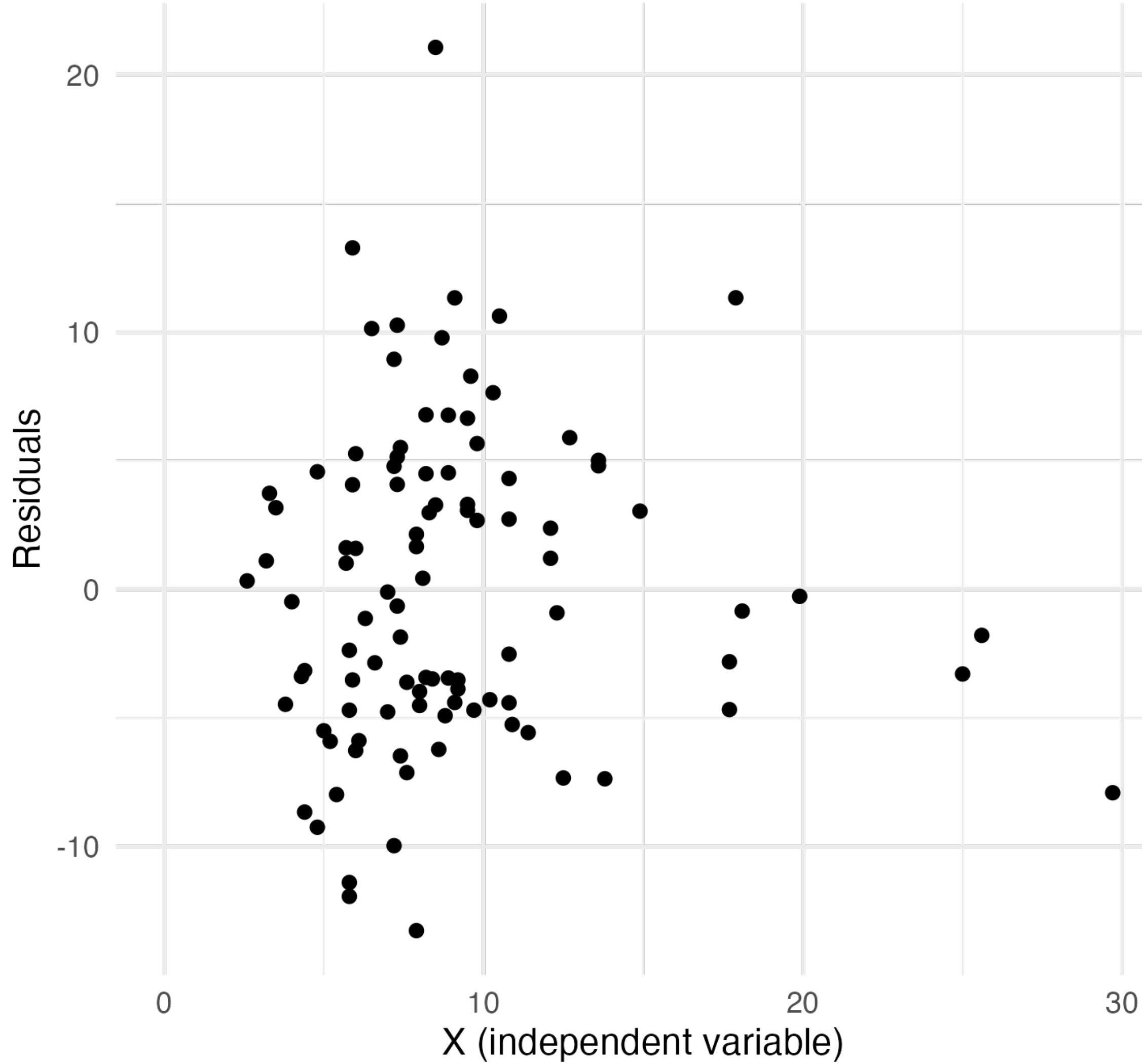
The regression line always runs through the mean of X and the mean of Y

Visually...



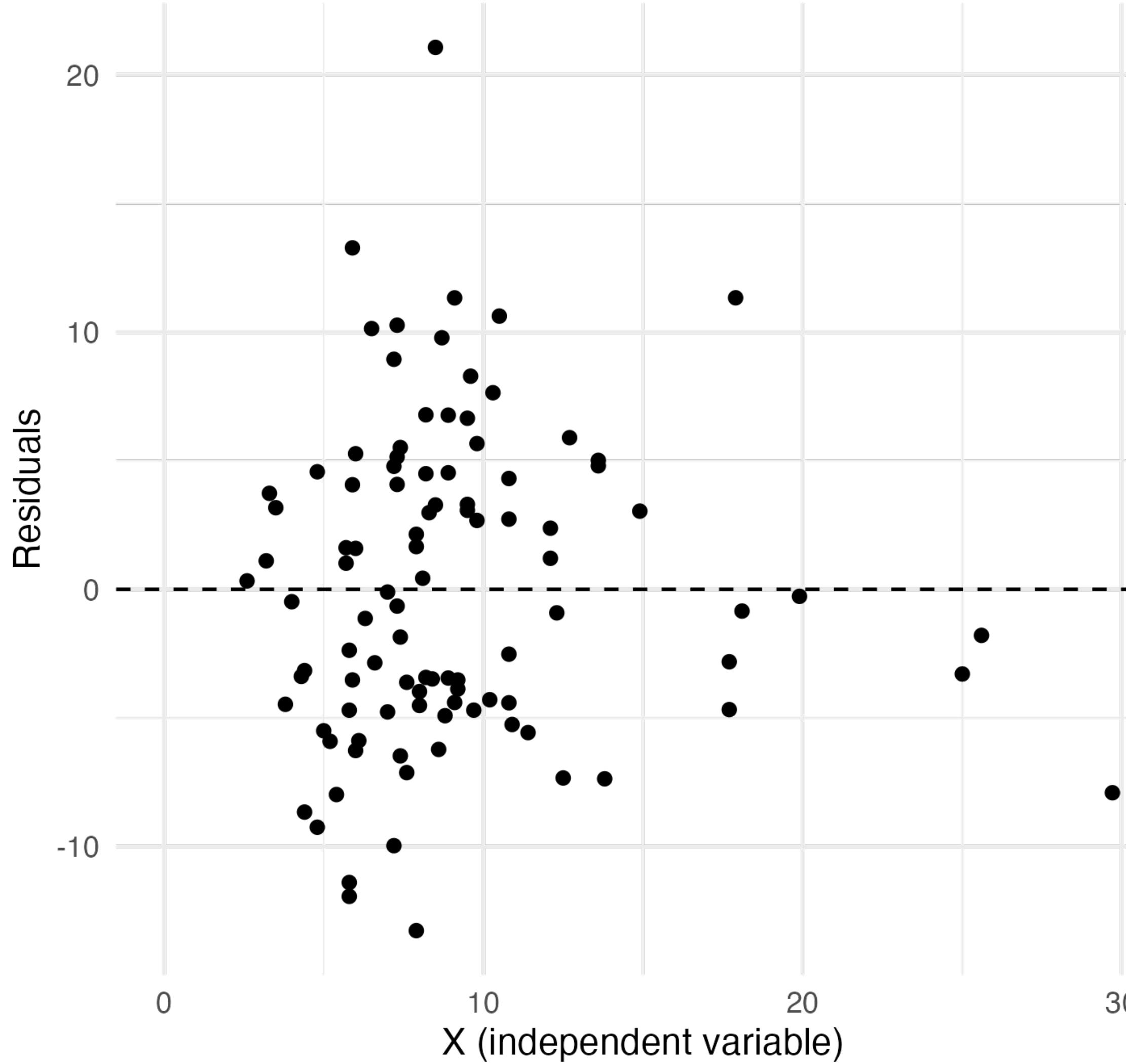
If we take all the
residuals ($Y_i - \hat{Y}_i$)...

Visually...



And we plot them...

Visually...



Their mean will
always be zero.

Linear Regression in R

- ▶ Example: Brexit data from earlier weeks. What's the expected change in “Leave vote” in a local authority associated with a one-unit increase in “Percentage of residents with a university degree”?

Coefficients

		Estimate	Std. Error	t value	Pr(> t)
$\hat{\alpha}$	(Intercept)	81.38653	1.24070	65.60	<2e-16 ***
$\hat{\beta}$	percent_degree	-1.04909	0.04432	-23.67	<2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

Linear Regression in R

- ▶ Example: What's the predicted change in life satisfaction (0-10 scale) associated with a one-unit increase in religiosity (0-10 scale)?

```
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 6.5526    0.2173  30.150 <2e-16 ***
## religiosity 0.1053    0.0471   2.236  0.0262 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 $\hat{\alpha}$ $\hat{\beta}$

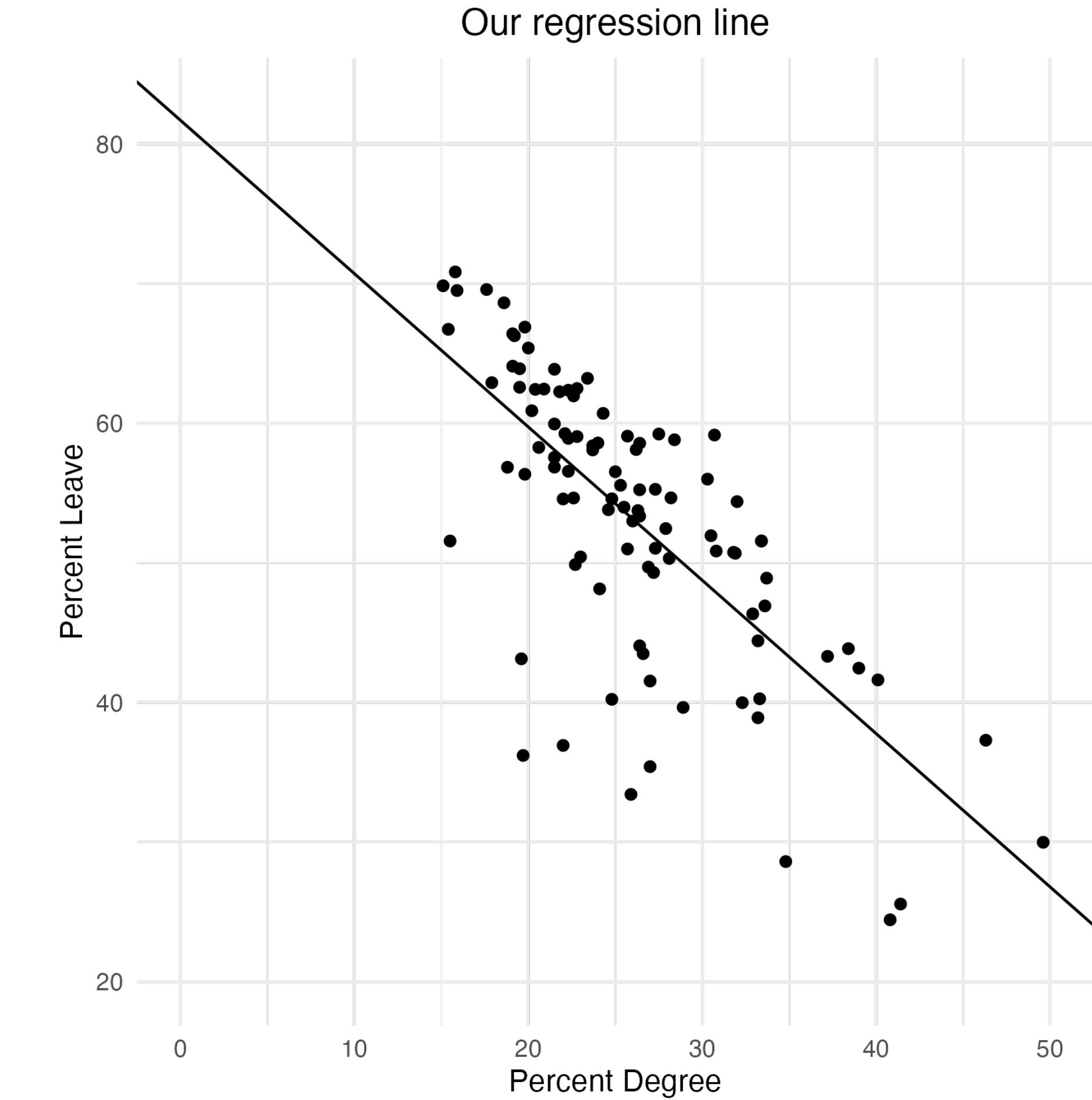
Goodness of fit (R^2)

- ▶ Normally, the thing we're most interested in when we fit a regression is the slope coefficient.
- ▶ Interpretation: “ $\hat{\beta}$ represents the predicted change in Y associated with a one-unit increase in X ”.
- ▶ It comes with its measures of uncertainty (week 13) and under very restrictive assumptions, it may be interpreted as an **effect** (week 14).
- ▶ However, we may also be interested in finding out how well our linear model explains variation in Y .

Goodness of fit (R^2)

- ▶ The measure of “goodness of fit” is the R^2 .
- ▶ Suppose we have fitted our regression line for this model:

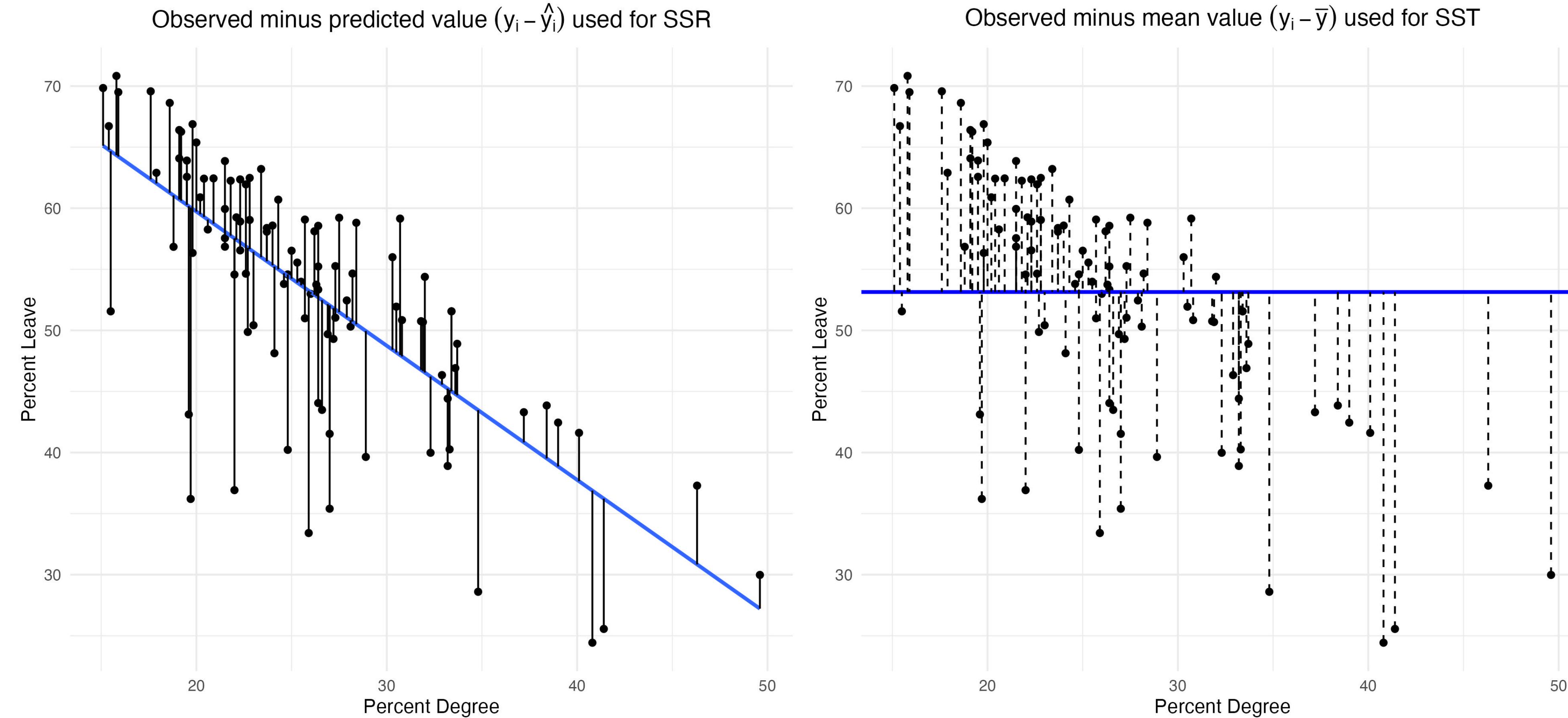
$$\text{Leave Vote}_i = \alpha + \beta(\text{Pct. Degrees}_i) + \varepsilon_i$$



Goodness of fit (R^2)

- ▶ Logic of the R^2 :
- ▶ Compare the unexplained variation in Y **after** fitting the line with the unexplained variation in Y **before** fitting the line
- ▶ Before fitting the line: best guess for any value of Y is the mean \bar{Y} .
- ▶ After fitting the line: best guess for Y_i is the predicted value \hat{Y}_i .

Goodness of fit (R^2)



Goodness of fit (R^2)

- ▶ The R^2 compares the Sum of Squared Residuals (unexplained variation after fitting the line, SSR), with the Sum of Total Squared (unexplained variation before fitting the line, SST)

$$R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{\sum_{i=1}^n (Y_i - \hat{Y})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

- ▶ Interpretation: “the model explain $R^2 \times 100\%$ of the variance in Y .

R^2 in R

Call:

```
lm(formula = percent_leave ~ percent_degree, data = brexit)
```

Residuals:

Min	1Q	Median	3Q	Max
-26.067	-1.911	1.724	4.345	15.082

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	81.38653	1.24070	65.60	<2e-16 ***
percent_degree	-1.04909	0.04432	-23.67	<2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.62 on 378 degrees of freedom

R^2 Multiple R-squared: 0.5971, Adjusted R-squared: 0.5961

F-statistic: 560.3 on 1 and 378 DF, p-value: < 2.2e-16

Good to know...

- ▶ Connection with other measures of correlation (from week 6)
- ▶ In a **bivariate** (simple) linear regression...
 - ▶ ...the R^2 is the square of Pearson's r ...
 - ▶ ...and the slope coefficient $\hat{\beta} = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}$
- ▶ But linear regression is more widely used because it can go beyond describing bivariate relationships: it can give us predictions for Y as a function of **more than one** X variable (next week).

Summing Up...

- ▶ Linear regression allows us to make **predictions** about a dependent variable Y , based on the known values of the independent variable X .
- ▶ Line of best fit minimises the “sum of squared residuals”. It is described by two values: the intercept ($\hat{\alpha}$) and slope ($\hat{\beta}$) coefficients.
- ▶ We’re normally interested in interpreting $\hat{\beta}$: it’s **the predicted change in Y associated with a one-unit increase in X** .
- ▶ We also get the R^2 : it’s the percentage of variance in Y explained by the linear model. **Your goal in life is not to maximise the R^2** .