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BAK3: Introduction to Quantitative
Methods

Week 11: Bivariate Linear Regression

Leonardo Carella
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The Plan for today

» Statistics:
» Recap: Hypothesis Tests and Inferential Statistics.
» Simple (Bivariate) Linear Regression.

» Coding In R:
» Merging Dataframes.

» Simple (Bivariate) Linear Regression.



> t.test (dataSreligiosity ~ dataSgender)

Welch Two Sample t-test

data: dataSreligiosity by data$gender
t = -3.3501, df = 309.28, p-value = 0.0008891
alternative hypothesis: true difference 1n means between
group Men and group Women 1s not equal to 0

95 percent confidence 1nterval:

-0.8637381 -0.2252634

sample estimates:

mean 1n group Men mean 1n group Women
4.994440 5.538941

Is there a significant difference in religiosity (0-10
scale) between men and women?



> t.test (data$number of children ~ dataSorigin)
Welch Two Sample t-test

data: dataS$number of children by dataSorigiln
t = -0.45917, df = 129.11, p-value = 0.0469

alternative hypothesis: true difference 1n means between group ‘Born

Abroad’ and group ‘Born in Austria’ 1s not equal to O
95 percent confidence 1nterval:

-0.4488909 0.2797818
sample estimates:

mean 1n group ‘Born Abroad’ mean 1n group ‘Born 1n Austria’
2.090909 2.175464

Is there a significant difference in number of children between people
born in Austria and people born abroad?



> prop.test (x
+ n

c (vaccilne gotflu, placebo gotflu),
c (vaccine samplesize, placebo samplesize))

2—sample test for equality of proportions with continulty correction

data: c(vaccine_gotflu, placebo gotflu) out of c(vaccine samplesize,
placebo samplesize)
X-squared = 59.891, df = 1, p-value = 1.003e-14
alternative hypothesis: two.sided
95 percent confidence 1interval:
-0.11436416 -0.06949298
sample estimates:
prop 1 prop 2
0.02057143 0.11250000

In @ medical trial for a new flu vaccine, is the proportion of participants who
received the vaccine and then got the flu significantly different from the
proportion who received a placebo and then got the flu?



Linear Regression

» Today: Bivariate (aka Simple) Linear regression, with two numerical
variables: X (independent variable) and Y (dependent variable).

» Goal: prediction. What'’s our best guess of ¥; (“the value of ¥ for
observation 1”) if we know X; (“the value of X for observation 1”)7?

» Simplest possible way to relate two variables: a line. You may
remembper from school the equation for a line: y = mx + n.

» Same here, but with Greek letters and indexes (optional): ¥, = a + pX;
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Linear Regression

Y, = a+ pX,

» The problem: not all the data is going to be on -
the line. The world is messy. 5 Ll e |
» For any ‘sensible’ line we draw, some values of Z :c‘:{" .
Y will be above the line, others below the line. - n V,-:;,:,.-;- .’
° o9
» SO we model the line with some error &, which L -
may differ for each observation: 30 '

X (independent variable)
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Linear Regression

» This is a model of the process that generates Y: Y is a function of X plus
some random error. It's a mathematical representation of reality.

» o is the intercept parameter: the predicted value of ¥ when X = 0.

» [3is the slope parameter: the predicted change in Y associated with a one-
unit increase in X. The slope is usually what we’re most interested in.

» This is a linear model: by assumption, for every one-unit increase in X, we
will see a corresponding increase in Y by f amount.
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Linear Regression
Y =a+ pX + ¢

» a and [ are parameters in our model: unknown features of the

data-generating process, which we do not directly observe
because our data comes with some random error.

» We actually estimate a and ,BA from our observed data, by figuring
out the “best” line to fit through our data:

Predicted (or > A - =stimates for the
“fitted”) values of Y Y 1 a + ﬁXl intercept and slope




Linear Regression

» How do we pick the “best” line ¥ = a+ ,BAXI-?

» Ordinary Least Squares: we choose & and ,BA so that they minimise the
sum of squared residuals, where the residuals € are the difference
between the predicted values of Y and the observed values Y:

n n n

min ) (¢)*=min ) (¥;,— ¥)> =min ) (¥,—a - pX,’

bz “b i b

» You can solve for & and ,BA with calculus (out we'll let R do it for us!)
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Y (dependent variable)

N
o

30

10 20
X (independent variable)

Visually...

...because if we take all the

30

diffe

‘ence

Va

ues O

predicted va

petween the observed

N black) and the

ues Y (in red)...

... Ihen we square these
differences (the residuals), so

they all become positive...

...and we sum them all up, this
specific line returns the minimum
sum of squared residuals.
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Visually...
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+0 The intercept & is the

predicted value of ¥ when X

50 IS zero. In this case, about 35.
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X (independent variable)
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Visually...
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Y (dependent variable)

N
o

The slope ,BA S the predicted
change in Y as we increase
30 X by 1. In this case, it's 1.25

0 10 20 30
X (independent variable)




Y (dependent variable)
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10 20
X (independent variable)

Visually...

30

Because we're fitting a line, the
predicted increase in Y associated
with a one-unit increase in X is the

same (,BA = 1.25) everywhere...

...S0, for instance, increasing X
by 10 Is associated with a 12.5

increase in Y.
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The regression line always runs
through the mean of X and the
mean of Y

Y (dependent variable)
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0 10 20 30
X (independent variable)
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Visually...

70

g f we take all the
J residuals (Y, — Y))...
40
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0 10 20 30

X (independent variable)
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Visually...
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Residuals
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‘ And we plot them...
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X (independent variable)
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Visually...

20 *
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X (independent variable)
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Linear Regression in R

» Example: Brexit data from earlier weeks. What's the expected
change In “Leave vote” In a local authority associated with a one-unit
INncrease In “Percentage of residents with a university degree™”

Coefficilents:
FEstimate Std. Error t value Pr(>]|t]|)
@ (Intercept) 81.38653 1.24070  65.60 <2e-16 **x*
[§ percent degree GlEEERE 0.04432 —-23.67 <Z2e-16 **x*

Signif. codes: 0 ‘Y**x7/ (0.001 ‘**’/ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘' ’ 1
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Linear Regression in R

» Example: What'’s the predicted change in life satisfaction (0-10
scale) associated with a one-unit increase in religiosity (0O-10 scale)”

## Coefficients:

4 Estimate Std. Error t wvalue Pr(>|t])
@ ## (Intercept) 6.5526 0.2173 30.150 <2e-16 ***
B ## religiosity  0.1053 0.0471 2.236 0.0262 *
#H#E ——-

## Signif. codes: 0 '***x' (Q.001 '"**' 0.01 '"*' O0.05 '.' 0.1 ' " 1
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Goodness of fit (R?)

» Normally, the thing we're most interested in when we fit a regression
IS the slope coefficient.

» Interpretation: ,BA represents the predicted change in Y associated
with a one-unit increase in X”.

» [t comes with its measures of uncertainty (week 13) and under very
restrictive assumptions, it may be interpreted as an effect (week 14).

» However, we may also be interested in finding out how well our
inear model explains variation in Y.
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» [ he measure of “goodness of

fit” is the R*.

» Suppose we have fitted our
regression line for this model:

Leave Vote; = a + f(Pct.

Degrees,) + &;

Percent Leave

80

(o)}
o

N
o

20

10

Goodness of fit (R?)

Our regression line

20 30
Percent Degree

40

50
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Goodness of fit (R?)

» Logic of the R*:

» Compare the unexplained variation in Y after fitting the line with
the unexplained variation in ¥ before fitting the line

» Before fitting the line: best guess for any value of Y is the mean Y.

» After fitting the line: best guess for Y, is the predicted value Y i
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Goodness of fit (R-

Observed minus predicted value (y; - V) used for SSR Observed minus mean value (y;-y) used for SST
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Goodness of fit (R?)

» The R? compares the Sum of Squared Residuals (unexplained

variation after fitting the line, SSR), with the Sum of Total Squared
(unexplained variation before fitting the line, SST)

w2 SSR . X, (=YY
SST Y (Yi—Y)

» Interpretation: “the model explain R X 100 % of the variance in Y.
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R inR

Call:
Im(formula = percent leave ~ percent degree, data = brexit)
Residuals:

Min 10 Median 30 Max

-20.007 -1.911 1.724 4.345 15.082

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 81.38653 1.24070 65.60 <2e-16 ***
percent degree -1.04909 0.04432 -23.67 <Ze-1lb ***

Signif. codes: 0 Yx*xx" (0.001 Y»*x" 0.01 >" 0.05 . 0.1 ¥ " 1

Residual standard error: 6.62 on 378 degrees of freedom
I@Zletiple R-squared: 0.5971, Adjusted R-squared: 0.5961
F-statistic: 560.3 on 1 and 378 DF, p-value: < 2.2e-16
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Good to know...

» Connection with other measures of correlation (from week 6)

» In a bivariate (simple) linear regression...

» ...the R is the square of Pearson’s r...

o~ CoviX,Y)
» ...and the slope coefficient ) = ———
Var(X)

» But linear regression Is more widely used because It can go beyond
describing bivariate relationships: it can give us predictions for Y as a
function of more than one X variable (next week).



Summing Up...

» Linear regression allows us to make predictions about a dependent
variable Y, based on the known values of the independent variable X.

» Line of best fit minimises the “sum of squared residuals”. It Is
described by two values: the intercept (@) and slope (/) coefficients.

» \We're normally interested in interpreting ,BA: t's the predicted change
in Y associated with a one-unit increase in X.

» \WWe also get the R?: it’s the percentage of variance in Y explained by
the linear model. Your goal in life is not to maximise the R”.



