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✴ Logistic Regression 

✴ Predicting discrete binary outcomes: Elected/Not Elected, War/
Not War, Voted/Didn’t Vote, Voted Labour/Did not vote Labour

✴ Minimal aims: summarising + visualising relationships. 

✴ Going a bit further: understanding average marginal effects, 
very gentle introduction to maximum likelihood estimation.

✴ Course Wrap-up

✴ Where to go next, Q&A.
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✴ An outcome variable  is generated in the population as a linear 
combination of variables plus some chance error :

Y
ϵ

Y = α + β1X1 + β2X2 + β3X3 . . . βpXp + ϵ

✴ Our data are a sample from this population. 

✴ We estimate  so that the sum of squared residuals 
(the errors we observed in the sample) is minimised. 

α̂, ̂β1, ̂β2, ̂β3 . . . ̂βp

✴ This procedure recovers the population parameters without bias and 
efficiently under some strong assumptions about model specification 
and the nature of the error term. 
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✴ The coefficients returned by a multiple linear regression represent 
the expected change in  associated with a one-unit increase in , 
holding all other covariates constant. 

Y X

✴ When a variable is nominal, each category will have its own 
coefficient, which refers to the expected difference in the outcome 
between that category and the ‘reference group’.

✴ Standard errors represent the uncertainty of the coefficient estimate. 
P-value summarise our evidence against the null that the coefficient 
is zero in the population. 
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✴ Interactions are used to model moderation: when the relationship 
between  and  depends on the level of a third variable .X1 Y X2

✴ When  is our independent variable of interest, we call this 
heterogeneous treatment effect. Modelled as:

X1

                               Y = α + β1X1 + β2X2 + β3(X1 ⋅ X2) + ϵ

✴ The effect of  linearly depends on . As we increase  by one 
unit, the effect of a one-unit increase of  on  goes up by . 

X1 X2 X2
X1 Y β3
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✴ Polynomials are used to model non-linearity: when the relationship 
between  and  depends on the level of  itself.X Y X

✴ Most commonly: second-order (quadratic) polynomial:

                                         Y = α + β1X + β2X2 + ϵ

✴ Graphically, a parabola with vertex at . U-shaped if , 
n-shaped if . 

−β1/2β2 β2 > 0
β2 < 0

✴ Slope varies across values of : instantaneous rate of change is 
. (The derivative, which will come back today!)

X
β1 + 2β2X
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Recap: Visualising Model Estimates

✴ As our models get more 
complex, tables  plots.<

✴ Predicted Values Plot. Plot the 
predicted values of  across 
values of , holding controls 
constant. 

Y
X

✴ Conditional Effect Plots. Plot 
the marginal effect of  on  
across values of  (moderation) 
or  itself (non-linearity). 

X Y
Z

X



Logistic Regression



Logistic Regression: Motivation



Logistic Regression: Motivation

✴ What does it mean predicting ‘turnout’, or ‘war’ or ‘Leave vote’? 



Logistic Regression: Motivation

✴ What does it mean predicting ‘turnout’, or ‘war’ or ‘Leave vote’? 

✴ When our dependent variable is binary, we would like to know the 
probability of an outcome (vote, war, Leave vote) from predictors. 



Logistic Regression: Motivation

✴ What does it mean predicting ‘turnout’, or ‘war’ or ‘Leave vote’? 

✴ When our dependent variable is binary, we would like to know the 
probability of an outcome (vote, war, Leave vote) from predictors. 

✴ An approach: just use OLS. 



Logistic Regression: Motivation

✴ What does it mean predicting ‘turnout’, or ‘war’ or ‘Leave vote’? 

✴ When our dependent variable is binary, we would like to know the 
probability of an outcome (vote, war, Leave vote) from predictors. 

✴ An approach: just use OLS. 

Pr(Leavei = 1) = α + βEuroscepticism (0-10 scale)i + ϵi



Logistic Regression: Motivation

✴ What does it mean predicting ‘turnout’, or ‘war’ or ‘Leave vote’? 

✴ When our dependent variable is binary, we would like to know the 
probability of an outcome (vote, war, Leave vote) from predictors. 

✴ An approach: just use OLS. 

Pr(Leavei = 1) = α + βEuroscepticism (0-10 scale)i + ϵi

✴ Linear Probability Model (LPM): regress a 0-1 binary variable on 
covariates; interpret the predicted values as fractional probabilities.
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Logistic Regression: Motivation
✴ Unbounded predictions: LPMs often returns negative probabilities or 

probabilities above 1. 
✴ More problems: 

✴ Non-normal errors: For any value of , only two possible errors: 
 if  and  if . These won’t distribute normally. 

̂Y
0 − ̂Y Y = 0 1 − ̂Y Y = 1

✴ Non-constant variance:  is either 0 or 1, but  can be any value. So 
the absolute size of the error  gets smaller as  gets closer 
to 0 or 1, and bigger as it gets farther. So  and  are correlated.

Yi
̂Yi

ϵi = Yi − ̂Yi
̂Y

Var(ϵ) ̂Y
✴ Only advantages of LPMs: easy-to-interpret coefficients and 

computationally faster than alternative. With today’s software, 
generally no good reason to use them (though still pop up in econ). 
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✴ The ‘squiggle’ is known as a sigmoid. Its equation is:

                                         Pr(Y = 1) =
1

1 + e−(α+βX)

✴ Where  is 2.71828… (Euler’s number). e

✴ Raising  to the power of something is the inverse of taking a 
natural logarithm of something: 

e

                   e3 = 20.08554... → log(20.08554...) = 3
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Logistic Regression 

                                           Pr(Y = 1) =
1

1 + e−(α+βX)

✴ can be rearranged with a bit of algebra as…

                                       log
Pr(Y = 1)

1 − Pr(Y = 1)
= α + βX

✴ And because  is binary,  is the same as …Y 1 − Pr(Y = 1) Pr(Y = 0)

                                       log
Pr(Y = 1)
Pr(Y = 0)

= α + βX

✴
 is known as log-odds, or logit function of .log

Pr(Y = 1)
1 − Pr(Y = 1)

Pr(Y = 1)
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Odds are a way to express probability (used in betting). Odds = 

p
1 − p

✴ For  (50% probability), odds is 1.  p = 0.5

✴ For , odds is 3, because p = 0.75 0.75/(1 − 0.75) = 3

✴ For , odds is 1/3, because p = 0.25 0.25/(1 − 0.25) = 1/3

 Log-odds centre the outcome at 0 and linearise it:

✴ For , odds is 1  log-odds or  is p = 0.5 → logit(0.5) log(1) = 0

✴ For , odds is 3  log-odds or  is p = 0.75 → logit(0.75) log(3) ≈ 1.10

✴ For , odds is 1/3  log-odds or  is p = 0.25 → logit(0.25) log(1/3) ≈ − 1.10

✴ For , odds is 9  log-odds or  is p = 0.9 → logit(0.9) log(9) ≈ 2.20

✴ For , odds is 1/9  log-odds or  is p = 0.1 → logit(0.1) log(1/9) ≈ − 2.20
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✴ If I have the log-odds x, and I want the probability, I use the logistic 
function (also known as inverse-logit, and notated as ): logit−1
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Probability to Log-Odds and Back
✴ If I have a probability p, I can get the log-odds with the logit function:

                                     log-odds = log(
p

1 − p
) = logit(p)

✴ If I have the log-odds x, and I want the probability, I use the logistic 
function (also known as inverse-logit, and notated as ): logit−1

                                             p =
1

1 + e−x
= logit−1(x)

✴ logit(0.25) ≈ − 1.10

✴ logit(0.5) = 0

✴ logit(0.75) ≈ 1.10

✴ logit(0.952) ≈ 3

✴ logit−1(−1.10) ≈ 0.25

✴ logit−1(0) = 0.5

✴ logit−1(1.10) ≈ 0.75

✴ logit−1(3) ≈ 0.952
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Logistic Regression, Two Ways

With  as log-odds:

✴ Easy-to-interpret right-hand side: it’s a 
linear function, like with the linear model. A 
1-unit increase in  increases outcome by .

✴ Hard-to-interpret left-hand side: it’s a funky 
way of expressing probabilities, which can 
take any value from  to . 
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X β

− inf + inf

With  as a probability:

✴ Easy-to-interpret left-hand side: it’s a 
probability, can only take values comprised 
between 0 and 1. 

✴ Hard-to-interpret right-hand side: it’s a non-
linear curve (sigmoid). Not obvious what a 
1-unit increase in  does.
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✴ Use inverse-logit function to get 

the predicted probability:
✴ Probability of Leave vote for 

Euroscepticism = 0
logit−1(−3.68) = 0.024

✴ Probability of Leave vote for 
Euroscepticism = 1
logit−1(−3.68 + 0.56) = 0.042

✴ Probability of Leave vote for 
Euroscepticism = 2
logit−1(−3.68 + 2 × 0.56) = 0.072

✴ Probability of Leave vote for 
Euroscepticism = 3
logit−1(−3.68 + 3 × 0.56) = 0.12

Dependent variable:
Leave Vote

Intercept —3.68 (2.63)
Euroscepticism 0.56 (0.38)

Observations 7
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Logistic Regression: Multiple Predictors

✴ Translating this into predicted 
probabilities is trickier.

✴ The predicted change in 
probability associated with a 
one-unit increase in 
Euroscepticism depends both on 
the level of Euroscepticism and 
on the level of Johnson 
Approval…

✴ In complex models, interpret sign 
and significance of coefficients, 
do not interpret their value.

Dependent 
variable:Leave Vote

Intercept —6.21*** (0.93)
Euroscepticism 0.78*** (0.13)
Johnson Approval 0.26*** (0.09)
Observations 200
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Logistic Regression: Minimal Aims 

✴ Use when the dependent variable is a  binary variable, and we want 
to know the probability that it takes the value of 1. 

0 − 1

✴ It fits a curve constrained between 0 and 1. You can do with your 
independent variables all the things we’ve seen with OLS (add multiple 
controls, categorical predictors, interactions, polynomials).

✴ Coefficients refer to predicted change in log-odds: not easily interpretable.

✴ But you can safely interpret sign ( ) and significance: “Euroscepticism is 
positively and significantly ( ) associated with probability of 
Leave vote, holding all else constant.”

±
p < 0.05

✴ Use predicted values plot to get a sense of substantive effects for an 
‘average’ observation, expressed in terms of predicted probabilities. 
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Logistic Regression: Two Extra Steps 

✴ Average Marginal Effects

✴ Summarise average relationship between the regressors and the 
outcome in terms of probability.  

✴ Useful quantity to interpret of model estimates, and increasingly 
common. But not integral or specific to logistic regression. 

✴ Maximum Likelihood Estimation

✴ How your statistical software picks a particular set of coefficients 
(i.e. a particular ‘squiggle’) over all possible others. 

✴ Essential to the computation of model estimates. But R does it for 
you, so it’s just nice to have a vague idea of what’s going on.  
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X Marginal Effects
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4 0.086

5 0.115

8 0.120

9 0.091

10 0.063

Mean 0.080
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1 33 2 0 0.035 —0.12 0.006

2 1010 2 0 0.021 —0.007 0.003

3 22 4 1 0.008 —0.003 0.001

4 1010 5 1 0.049 —0.017 0.008

5 1010 4 0 0.041 —0.014 0.006

6 00 3 1 0.001 —0.001 0.0002

7 77 4 1 0.251 —0.087 0.041

8 1010 4 0 0.041 —0.014 0.006

… …… … … … … …

Average Marginal Effects (=Mean) 0.078 —0.027 0.013

Pr(Leave) = logit−1(α + β1Euroscepticism + β2Trust + β3Gender + ϵ)



Average Marginal Effects in R
Pr(Leave) = logit−1(α + β1Euroscepticism + β2Trust + β3Gender + ϵ)



Average Marginal Effects



Average Marginal Effects
✴ Almost-correct interpretation of AMEs: “on 

average, a 1-point increase in Euroscepticism 
is associated with a 7.8 percentage-point 
increase in probability of voting Leave.”



Average Marginal Effects
✴ Almost-correct interpretation of AMEs: “on 

average, a 1-point increase in Euroscepticism 
is associated with a 7.8 percentage-point 
increase in probability of voting Leave.”

✴ Why ‘almost’ correct? Because AMEs aren’t 
averages of one-point changes (these would 
be slopes that go from  for  and the value 
of  for ).

̂Yi Xi
̂Yi Xi + 1



Average Marginal Effects
✴ Almost-correct interpretation of AMEs: “on 

average, a 1-point increase in Euroscepticism 
is associated with a 7.8 percentage-point 
increase in probability of voting Leave.”

✴ Why ‘almost’ correct? Because AMEs aren’t 
averages of one-point changes (these would 
be slopes that go from  for  and the value 
of  for ).

̂Yi Xi
̂Yi Xi + 1

✴ AMEs are averages of slopes at one point 
(i.e. derivatives). 



Average Marginal Effects
✴ Almost-correct interpretation of AMEs: “on 

average, a 1-point increase in Euroscepticism 
is associated with a 7.8 percentage-point 
increase in probability of voting Leave.”

✴ Why ‘almost’ correct? Because AMEs aren’t 
averages of one-point changes (these would 
be slopes that go from  for  and the value 
of  for ).

̂Yi Xi
̂Yi Xi + 1

✴ AMEs are averages of slopes at one point 
(i.e. derivatives). 

✴ But the ‘one-point increase’ interpretation is 
fine. Or just say: the average marginal effect 
of Euroscepticism is 7.8 percentage points.
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✴ Common these days to have a marginal effects plot alongside of a regression 
table of (largely unintelligible) log-odds coefficients.

✴ AMEs estimates are superior to alternative approaches (included the 
predicted probabilities we plotted earlier), because they are calculated on 
data from our sample, not from hypothetical ‘average cases’. 

✴ See: Hanmer, M.J. and Kalkan, K. (2013) “Behind the curve: Clarifying the 
best approach to calculating predicted probabilities and marginal effects 
from limited dependent variable models.”AJPS, 57(1), pp.263-277.

✴ AMEs even more important to convey effect size estimates as your logistic 
models become more complex (interactions, polynomials):

✴ Mize, T.D. (2019) “Best practices for estimating, interpreting, and 
presenting nonlinear interaction effects.” Sociological Science, 6, pp.81-117.

Average Marginal Effects
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Maximum Likelihood: Motivation
✴ So far, we’ve ignored the question of how we obtain the coefficients — 

i.e. how we picked the ‘sigmoid of best fit’.

✴ With OLS, we chose the line that minimises the sum of squared 
residuals, where the residual for observation i is defined as . ̂ϵi = Yi − ̂Yi

✴ We can’t do the same with :log
Pr(Leave = 1)
Pr(Leave = 0)

= α + βEuroscepticism

✴ When  we get  (negative infinity). So all 

residuals will be . 

Leavei = 0 log
0
1

= − ∞

−∞ − something = − ∞

✴ When  we get  (positive infinity). So all 

residuals will be .

Leavei = 1 log
1
0

= + ∞

+∞ − something = + ∞
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Maximum Likelihood: Intuition
✴ Likelihood: .Pr(Data |Model)

✴ Given a logistic function with certain 
values of the coefficients  and , what’ 
the likelihood of observing the outcome 
for observation i?

α β

✴ If , it’s Leavei = 1 Pr(Leave) = 1

✴ If , it’s Leavei = 0 1 − Pr(Leave) = 1

✴ The overall likelihood of the data, given a 
model, is the probability of jointly 
observing all these outcomes  the 
product of the likelihoods.

→

✴ ℓ(α, β) = ΠYi=1( ̂pi) ΠYi=0(1 − ̂pi)
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Maximum Likelihood: Intuition
R# X Y Likelihood

1 5 1 0.29

2 9 1 0.79

3 10 1 0.87

4 1 0 1–0.04 = 0.96

5 3 0 1–0.12 = 0.88

6 4 0 1–0.19 = 0.81

7 8 0 1–0.69 = 0.31

Likelihood of the model 0.043

#1

0.29

#4

0.04

#5

0.12
0.19

#6 #7

0.69

#2

0.79
0.87

#3

0.29  0.79  0.87  0.96 
 0.88  0.81  0.31 
× × ×

× × ×
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Maximum Likelihood: Intuition
✴ No closed-form solution: R will go 

over many possible sigmoids, and 
find the coefficients that return the 
highest joint likelihood  of the data 
— hence, maximum likelihood. 

ℓ

✴ In fact, for ease of computation, it 
will seek the one with the maximum 
log-likelihood (LL).

✴ Nothing to worry about: the 
maximum LL occurs for the same 
coefficients as the maximum of . ℓ

 = 0.043 
LL = 3.15
ℓ

−
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✴ No , for the same reason 

that we can’t do OLS: squared 
residuals are all .

R2

∞

✴ Software normally returns the 
Log-Likelihood (LL), and 
something called the Akaike 
Information Criterion. 
Neither is particularly useful. 

✴ Pseudo-  is a bit better: 
compares the LL of the model 
with the LL of a model 
without independent 
variables.

R2
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Our Model Best Guess without predictors

̂p =
# Leave = 1
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 = 4.78LL0 −
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Goodness of fit 
✴ Simplest option:

McFadden’s Pseudo- : R2 1 −
LLM

LL0

Adj. McFadden’s Pseudo- : R2 1 −
LLM − p − 1

LL0

✴ Where  is the number of independent variables. p

✴ A number of other pseudo-  (Cox&Snell, Nagelkerke, Tjur). R2

✴ Any of these goodness-of-fit statistics may be useful for 
model comparison, but not worth losing your sleep over. 
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Summing Up
✴ Use logistic regression when you have a binary 

outcome variable, as you want to restrict predictions 
to 0-1 interval (i.e. to predict probabilities). 

✴ Direction and significance of log-odds coefficients are 
easily interpretable; effect size is not. 

✴ Average Marginal Effect is the best way to express 
how change in  affects the probability that  is 1. X Y

✴ Use predicted probabilities and AMEs to get a sense 
of the substantive relationships between variables.
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What Next?
✴ Going even further beyond OLS:

✴ Other non-linear models (multinomial, Poisson  extensions of logistic regression).

✴ ML approaches (Lasso, Ridge, Decision Trees).

→

✴ Specific ways of applying our workhorse models:

✴ Time series (panel data, survival analysis).

✴ Design-based approaches (matching, IV, RDDs).

✴ Experiments.

✴ Stats for goals other than inference:

✴ Measurement, classification, description of complex systems.

✴ Method options are sprawling and changing fast (AI is coming for all of us) — make 
your methods training fit your research needs, not the other way around. 
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What Next?
✴ Hilary Term 2024:

✴ Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the 
Social Sciences”, Annual Review of Statistics and Its Application. 

✴ Computational Methods (with Rachel!)

✴ Oxford Spring School 2024 (applications now open):

✴ Machine Learning

✴ Causal Inference (design-based, field experiments)

✴ Text Analysis

✴ Trinity Term 4-week courses. 

✴ Can’t get enough of it? Audit Intermediate Stats next year. Keep an eye out for method 
courses (ECPR, ICPSR, SICSS, EITM…)

✴ Long-term investment will involve some self-learning. 



Thank you for your kind 
attention! 


Leonardo Carella

leonardo.carella@nuffield.ox.ac.uk


