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T'he Plan for Today

* Short Recap: Linear Regression, Interactions, Polynomials
* Logistic Regression

* Predicting discrete binary outcomes: Elected /Not Elected, War/
Not War, Voted /Didn’t Vote, Voted Labour/Did not vote Labour

* Minimal aims: summarising + visualising relationships.

* Going a bit further: understanding average marginal effects,
very gentle introduction to maximum likelihood estimation.

* Course Wrap-up

* Where to go next, Q&A.
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Recap: Muluple Linear Regression

An outcome variable Y is generated in the population as a linear
combination of variables plus some chance error e:

Y=a‘l‘ﬁle+ﬁ2X2+ﬁ3X3...ﬁpo+€

Our data are a sample from this population.

We estimate @, ,BAI, ,BAZ, ,BA3 . ,BAp so that the sum of squared residuals

(the errors we observed in the sample) is minimised.

This procedure recovers the population parameters without bias and
efficiently under some strong assumptions about model specification
and the nature of the error term.
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Recap: Muluple Linear Regression

* The coefficients returned by a multiple linear regression represent
the expected change in Y associated with a one-unit increase in X,
holding all other covariates constant.

* When a variable is nominal, each category will have its own
coefficient, which refers to the expected difference in the outcome
between that category and the ‘reference group’.

* Standard errors represent the uncertainty of the coefficient estimate.
P-value summarise our evidence against the null that the coefficient
is zero in the population.
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* Interactions are used to model moderation: when the relationship
between X; and Y depends on the level of a third variable X,.

* When X is our independent variable of interest, we call this
heterogeneous treatment effect. Modelled as:

Y'=a+ [\ X| + Xy + f3(X; - X)) + €

* The effect of X, linearly depends on X,. As we increase X, by one
unit, the effect of a one-unit increase of X; on Y goes up by f.
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Recap: Interactions and Polynomials

* Polynomials are used to model non-linearity: when the relationship
between X and Y depends on the level of X itself.

* Most commonly: second-order (quadratic) polynomial:
Y=0{+,51X+ﬂ2X2+€

* Graphically, a parabola with vertex at —f3,/2f3,. U-shaped if 3, > 0,
n-shaped if 3, < 0.

* Slope varies across values of X: instantaneous rate of change is
P + 2p,X. (The derivative, which will come back today!)
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the marginal effect of X on Y
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Effects on Linear

across values of Z (moderation)

or X itself (non-linearity).

Authoritarian education reform

Figure 2. Marginal Effects Plot: Differentiating the Effect of Democratic and Authoritarian

Reforms on Satisfaction With Democracy.
Estimates from Model 5 in Table 3.
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Logistic Regression: Motivation

* What does it mean predicting ‘turnout’, or “war’ or ‘Leave vote’?

* When our dependent variable is binary, we would like to know the
probability of an outcome (vote, war, Leave vote) from predictors.

* An approach: just use OLS.
Pr(Leave; = 1) = a + fEuroscepticism (0-10 scale)i + €,

* Linear Probability Model (LPM): regress a 0-1 binary variable on
covariates; interpret the predicted values as fractional probabilities.
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Logistic Regression: Motivation

* Unbounded predictions: LP’Ms often returns negative probabilities or
probabilities above 1.

* More problems:

* Non-normal errors: For any value of Y, only two possible errors:
O—-YifY=0and I —Yif Y = 1. These won't distribute normally.

* Non-constant variance: Y is either 0 or 1, but % : can be any value. So
the absolute size of the error €; = Y, — Y, gets smaller as Y gets closer
to 0 or 1, and bigger as it gets farther. So Var(¢) and Y are correlated.

* Only advantages of LPMs: easy-to-interpret coetfficients and
computationally faster than alternative. With today’s software,
generally no good reason to use them (though still pop up in econ).



Probability of Leave Vote

Logistic Regression: Intuition
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Squiggles’ in Multiple Dimensions

Multiple Logistic Regression
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Logistic Regression

* The ‘squiggle’ is known as a sigmoid. Its equation is:

|
Pr(Y=1) =- —
[+ e—(@HpX)

* Where e is 2.71828... (Euler’s number).

* Raising e to the power of something is the inverse of taking a
natural logarithm of something:

e’ = 20.08554... —  10g(20.08554...) = 3
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Pr(Y = 1) = ——
1 + e—(@+hX)

* can be rearranged with a bit of algebra as...

Pr(Y = 1)
log =a+ /X
1 —Pr(Y=1)

* And because Y is binary, | — Pr(Y = 1) is the same as Pr(Y = 0)...

Pr(Y =1
., log ( ) is known as log-odds, or logit function of Pr(Y = 1).
l-Pr(Y=1)
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Odds are a way to express probability (used in betting). Odds = T
— P

* For p = 0.5 (50% probability), odds is 1.
* For p = 0.75, odds is 3, because 0.75/(1 — 0.75) =3
* For p = 0.25, odds is 1/3, because 0.25/(1 — 0.25) = 1/3
Log-odds centre the outcome at 0 and linearise it:
+ For p = 0.5, odds is 1 — log-odds or logit(0.5) is log(1) = 0
+ For p = 0.75, odds is 3 — log-odds or logit(0.75) is log(3) =~ 1.10
* For p = 0.25, odds is 1/3 — log-odds or logit(0.25) is log(1/3) ~ — 1.10
* For p = 0.9, odds is 9 — log-odds or logit(0.9) is log(9) ~ 2.20
* Forp = 0.1, odds is 1/9 — log-odds or logit(0.1) is log(1/9) ~ — 2.20
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* If T have the log-odds x, and I want the probability, I use the logistic

log-odds = log( 1 ) = logit(p)

function (also known as inverse-logit, and notated as logit™"):

1
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Probability to Log-Odds and Back

* If T have a probability p, I can get the log-odds with the logit function:
P

— P
* If T have the log-odds x, and I want the probability, I use the logistic

log-odds = log( 1 ) = logit(p)

function (also known as inverse-logit, and notated as logit™"):

p = 1 +le_x — logit_l(x)
* logit(0.25) ~ — 1.10 * logit™!(—=1.10) = 0.25
* logit(0.5) = 0 * logit™'(0) = 0.5
* 1ogit(0.75) ~ 1.10 * logit™!(1.10) =~ 0.75

* 1ogit(0.952) ~ 3 * logit™'(3) =~ 0.952
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Logistic Regression, Two Ways

With Y as a probability: With Y as log-odds:
1 Pr(Leave = 1) o
Pr(Leave = 1) = — log = a + fEuroscepticism
1 + e—(a+ﬂEuroscept1c1sm) Pr(Leave = 0)

Pr(Leave = 1) = logit™ (& + fEuroscepticism)  logit[Pr(Leave = 1)] = a + fEuroscepticism

* Easy-to-interpret left-hand side: it's a * Easy-to-interpret right-hand side: it's a
probability, can only take values comprised linear function, like with the linear model. A
between 0 and 1. 1-unit increase in X increases outcome by f.

* Hard-to-interpret right-hand side: it's anon- * Hard-to-interpret left-hand side: it’s a funky
linear curve (sigmoid). Not obvious what a way of expressing probabilities, which can
1-unit increase in X does. take any value from — inf to + inf.
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Observations ]

Log-Odds of Leave Vote Probability
2

o

Log-Odds of Leave Vote

r

Euroscepticism (0-10)



Logistic Regression Coeflicients

* Intercept: Log odds when X is Dependent variable:
zero: —3.68 Leave Vote

* Slope: Predicted change in log- Intercept —3.68 (2.63)
odds associated with a one-unit Euroscepticism 0.56 (0.38)

increase in X.

Observations 7
* Log-odds of Leave vote when

v . Log-Odds of Leave Vote Probability
Euroscepticism = 0: —3.68 :

o

Log-Odds of Leave Vote

r

Euroscepticism (0-10)



Logistic Regression Coeflicients

Intercept: Log odds when X is Dependent variable:
Slope: Predicted change in log- Intercept —3.68 (2.63)
odds associated with a one-unit Euroscepticism 0.56 (0.38)
increase in X.

Observations 7
Log-odds of Leave vote when I
Euroscepticism = 0: —3.68 : g y

Log-odds of Leave vote when
Euroscepticism = 1:

—3.68 +0.56 = —3.12

o

Log-Odds of Leave Vote

r

0 1 2 3 4 5 6 7 8 9 10
Euroscepticism (0-10)



Logistic Regression Coeflicients

Intercept: Log odds when X is Dependent variable:
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Logistic Regression Coeflicients

* Use inverse-logit function to get Dependent variable:
the predicted probability: Leave Vote

* Probability of Leave vote for Intercept —3.68 (2.63)
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Logistic Regression Coeflicients

Use inverse-logit function to get Dependent variable:
the predicted probability: Leave Vote
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Logistic Regression: Multple Predictors

* With multiple predictors, the
change in log-odds associated
with each predictor is still linear.
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* With multiple predictors, the
change in log-odds associated
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* The log-odds of Leave vote
probability for someone who
scores ‘0" on Euroscepticism and

‘0" on Johnson Approval is —6.21.
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Logistic Regression: Multple Predictors

x

x

With multiple predictors, the
change in log-odds associated

with each predictor is still linear.

The log-odds of Leave vote
probability for someone who
scores ‘0" on Euroscepticism and

‘0" on Johnson Approval is —6.21.

For each one-point increase in
Euroscepticism, the predicted
log-odds increase by 0.78.

For each one-point increase in
Johnson Approval, the predicted
log-odds increase by 0.26.
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Logistic Regression: Multple Predictors

* Translating this into predicted
probabilities is trickier.
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Logistic Regression: Multple Predictors

* Translating this into predicted
probabilities is trickier.

* The predicted change in
probability associated with a
one-unit increase in
Euroscepticism depends both on
the level of Euroscepticism and
on the level of Johnson
Approval...
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Logistic Regression: Multple Predictors
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values, or plot model function from sjPlot to get the plot.
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Visualising Predicted Probabilities

* Better (but not best) approach: predicted probabilities.

* Hold all other variables constant to their mean (if numeric) or to their
reference category (if nominal); get the predicted probability and its
confidence intervals. Use ggpredict from the ggeffects package to get the
values, or plot model function from sjPlot to get the plot.

* Pr(Leave) = logit™'(a + f,Euroscepticism + 3, Trust + f;Gender)
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Logistic Regression in R

model <- glm(Leavé ~ Euroscepticiém + likeJohnson, data—= bes,
family = "binomial")
model <- glm(Leave ~ Euroscepticism + likeJohnson, data = bes,

family = binomial(link = "logit"))

model <- glm(Euroscepticism ~ likelohnson, data = bes,
family = "binomial")

>
+
>
>
+
>
>
+
Error in eval(family$initialize) : y values must be 0 <=y <=1
>
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Logistic Regression: Minimal Aims

* Use when the dependent variable is a 0 — 1 binary variable, and we want
to know the probability that it takes the value of 1.

* It fits a curve constrained between 0 and 1. You can do with your
independent variables all the things we’ve seen with OLS (add multiple
controls, categorical predictors, interactions, polynomials).

* Coefficients refer to predicted change in log-odds: not easily interpretable.

* But you can safely interpret sign () and significance: “Euroscepticism is
positively and significantly (p < 0.05) associated with probability of
Leave vote, holding all else constant.”

* Use predicted values plot to get a sense of substantive etfects for an
‘average’ observation, expressed in terms of predicted probabilities.
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* Summarise average relationship between the regressors and the
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common. But not integral or specific to logistic regression.



Logistic Regression: Two Extra Steps

* Average Marginal Effects

* Summarise average relationship between the regressors and the
outcome in terms of probability.

* Useful quantity to interpret of model estimates, and increasingly
common. But not integral or specific to logistic regression.

* Maximum Likelihood Estimation

* How your statistical software picks a particular set of coetficients
(i.e. a particular ‘squiggle’) over all possible others.

* Essential to the computation of model estimates. But R does it for
you, so it’s just nice to have a vague idea of what’s going on.
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Average Marginal Effects
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* For an observation i, we can get the
marginal effect, or the
instantaneous rate of change in
probability at one point with the
derivative at its predicted value.

* Graphically, this corresponds to the
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the predicted/fitted value p..

* The average marginal effects are the
average of the slopes for all
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Average Marginal Effects

* For an observation i, we can get the
marginal effect, or the
instantaneous rate of change in
probability at one point with the
derivative at its predicted value.
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Average Marginal Effects

* For an observation i, we can get the

1 ® o0
e

marginal effect, or the

instantaneous rate of change in
probability at one point with the
derivative at its predicted value.
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4 10 5 i 0.049 —0.017 0.008
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Average Marginal Effects in R

Pr(Leave) = logit_l(a + B,Euroscepticism + B, Trust + f;Gender + €)

> margins(model)
Average marginal effects
glm(formula = Leave ~ Euroscepticism + trustMPs + gender, family = "binomial", data = bes)

Euroscepticism trustMPs gender
0.07841 -0.02719 ©0.01259
> margins_summary(model)
factor AME SE z p lower upper
Euroscepticism 0.0784 0.0014 55.9855 0.0000 0.0757 0.0812
gender 0.0126 0.0394 0.3195 0.7493 -0.0646 ©.0898
trustMPs -0.0272 0.0128 -2.1195 0.0340 -0.0523 -0.0020
> head(marginal_effects(model))
dydx_Euroscepticism dydx_trustMPs dydx_gender
0.034934821 -0.0140799805 0.0056085222
0.021075526 -0.0086488138 0.0033835164
0.007761427 -0.0032417654 0.0012460383
0.048529412 -0.0192219974 ©0.0077910323
0.040877210 -0.0163496473 0.0065625284
0.001454886 -0.0006128382 ©0.0002335708
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Average Marginal Effects

Almost-correct interpretation of AMEs: “on '

average, a 1-point increase in Euroscepticism
is associated with a 7.8 percentage-point
increase in probability of voting Leave.”

Why ‘almost’ correct? Because AMEs aren’t
averages of one-point changes (these would £ g
be slopes that go from Y for X; and the Valuec
of X fork 1 1)

AMEs are averages of slopes at one point
(i.e. derivatives).

But the ‘one-point increase’ interpretation is
fine. Or just say: the average marginal effect

of Euroscepticism is 7.8 percentage points. 2 e s 06 80 10
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* AMEs estimates are superior to alternative approaches (included the
predicted probabilities we plotted earlier), because they are calculated on
data from our sample, not from hypothetical “average cases’.

* See: Hanmer, M.J. and Kalkan, K. (2013) “Behind the curve: Clarifying the
best approach to calculating predicted probabilities and marginal effects
from limited dependent variable models.” AJPS, 57(1), pp.263-277.
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Figure 1. How social, economic, and climate programs shape support for bundled climate policy. The left panel shows average
effects of each policy element (colored by policy dimension) on support for the policy bundle, while the right panel shows
party-specific effects (red = Republican, blue = Democrat). Policy dimensions include carbon taxes, social programs, economic
programs, energy costs, government spending levels, and party sponsorship. Point estimates are average marginal component
effects (AMCEs) with 95% confidence intervals for each policy level. Each AMCE estimates how inclusion of the listed program
affects support for the bundled climate package. Each element is compared against a base category for each policy dimension,

denoted by an open circle.

Bergquist, Mildenberger and Stokes (2020)
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Average Marginal Effects

Common these days to have a marginal effects plot alongside of a regression
table of (largely unintelligible) log-odds coefficients.

AMEs estimates are superior to alternative approaches (included the
predicted probabilities we plotted earlier), because they are calculated on
data from our sample, not from hypothetical “average cases’.

* See: Hanmer, M.J. and Kalkan, K. (2013) “Behind the curve: Clarifying the
best approach to calculating predicted probabilities and marginal effects
from limited dependent variable models.” AJPS, 57(1), pp.263-277.

AMEs even more important to convey etfect size estimates as your logistic
models become more complex (interactions, polynomials):

* Mize, T.D. (2019) “Best practices for estimating, interpreting, and
presenting nonlinear interaction effects.” Sociological Science, 6, pp.81-117.
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Maximum lLikelihood: Motivation

So far, we've ignored the question of how we obtain the coefficients —
i.e. how we picked the ‘sigmoid of best fit'.

With OLS, we chose the line that minimises the sum of squared
residuals, where the residual for observation i is defined as €; = ¥, — V..

Pr(Leave = 1)

We can’t do the same with log = a + pEuroscepticism:
Pr(Leave = 0)
0 N
+ When Leave; = 0 we get log T (negative infinity). So all
residuals will be —oco — something = — .

« When Leave; = 1 we get log 0" + oo (positive infinity). So all

residuals will be 4+ 00 — something = + .
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Likelihood: Pr(Data | Model). 1

Given a logistic function with certain
values of the coefficients @ and f, what’
the likelihood of observing the outcome
for observation 1?
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Likelihood: Pr(Data | Model).

Given a logistic function with certain
values of the coefficients @ and f, what’
the likelihood of observing the outcome
for observation 1?

If Leave; = 1, it’s Pr(Leave) = 1

If Leave; = 0, it’'s 1 — Pr(Leave) = 1

p(leave)
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values of the coefficients @ and f, what’
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If Leave; = 1, it’s Pr(Leave) = 1

p(leave)

If Leave; = 0, it’'s 1 — Pr(Leave) = 1

The overall likelihood of the data, given a
model, is the probability of jointly
observing all these outcomes — the
product of the likelihoods.
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Likelihood: Pr(Data | Model). 1

Given a logistic function with certain
values of the coefficients @ and f, what’
the likelihood of observing the outcome
for observation 1?

If Leave; = 1, it’s Pr(Leave) = 1

p(leave)

If Leave; = 0, it’'s 1 — Pr(Leave) = 1

The overall likelihood of the data, given a
model, is the probability of jointly
observing all these outcomes — the
product of the likelihoods.

£, ) =Ty _y(py) Ty _o(1 = ) 29 4 56 78
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X Y Likelihood
5 1 0.29
9 1 0.79
10 1 0.87

Pr(Leave)

1 2 3 4 5 6 7 8 9
Euroscepticism

10



Maximum Likelithood: Intuition
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X Y Likelihood | i i
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9 1 0.79

10 1 0.87
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Likelihood

0.29

0.79

0.87

1-0.04 = 0.96

1-0.12 = 0.88

1-0.19 = 0.81
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R# X
1 5
2 9
3 10
4 1
5 3
6 =
7 3

Y Likelihood
1 0.29
1 0.79
1 0.87
0 1-0.04 = 0.96
0 1-0.12 = 0.88
0 1-0.19 = 0.81
0 1-0.69 = 0.31

0.87

Pr(Leave)
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R# X Y Likelihood
1 5 1 0.29
2 9 1 0.79
3 10 1 0.87
4 1 0 1-0.04 = 0.96
5 3 0 1-0.12 = 0.88
6 4 0 1-0.19 = 0.81
7 8 0 1-0.69 = 0.31
Likelihood of the model /0,043
0.29 X 0.79 X 0.87 X 0.96

X 0.88 X 0.81 X 0.31

0.87

Pr(Leave)
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1 0 ° 0
* No closed-form solution: R will go

over many possible sigmoids, and
find the coefficients that return the
highest joint likelihood ¢ of the data
— hence, maximum likelihood.

Pr(Leave)

* In fact, for ease of computation, it
will seek the one with the maximum

log-likelihood (LL).

* Nothing to worry about: the

maximum LL occurs for the same
10 o ® °

coefficients as the maximum of Z.
2 3 4 5 6 7 8 9 10
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* No closed-form solution: R will go
, , , ¢ =0.036
over many possible sigmoids, and [T ——33]
find the coefficients that return the
highest joint likelihood ¢ of the data
— hence, maximum likelihood.
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* In fact, for ease of computation, it
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log-likelihood (LL).

* Nothing to worry about: the
maximum LL occurs for the same p

coefficients as the maximum of Z. e o s e

4
Euroscepticism



Maximum Likelithood: Intuition

* No closed-form solution: R will go
over many possible sigmoids, and
find the coefficients that return the
highest joint likelihood ¢ of the data
— hence, maximum likelihood.

Pr(Leave)

* In fact, for ease of computation, it
will seek the one with the maximum

log-likelihood (LL).

* Nothing to worry about: the
maximum LL occurs for the same

coefficients as the maximum of Z.
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+ No R?, for the same reason
that we can’t do OLS: squared

residuals are all oo. _ _
Dependent variable:

* Software normally returns the ~ -mmmmmmmmmooemmeoooeooes

> stargazer(model, type = "text", single.row = TRUE)

. . Leave
Log-Likelihood (LL), and ~ ______________________ .
something called the Akaike  Euroscepticism 1.020*** (0.143)

Tnf t. Criter trustMPs -0.353** (0.172)
nrormation LIiterion. genderFemale 0.164 (0.513)
Neither is particularly useful. Constant -5.655%** (1.031)

Observations 199
Log Likelihood -50.830
Akaike Inf. Crit. 109. 660

Note: *p<@.1; **p<0.05; ***p<0.01
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+ No R?, for the same reason
that we can’t do OLS: squared

residuals are all oo. _ _
Dependent variable:

* Software normally returns the ~ -mrmmmmmmmmoooooooooooooos

> stargazer(model, type = "text", single.row = TRUE)

. . Leave
Log-Likelihood (LL), and ~ ______________________ .
something called the Akaike  Euroscepticism 1.020*** (0.143)

Tnf t. Criter trustMPs -0.353** (0.172)
nrorimation Lriterion. genderFemale 0.164 (0.513)
Neither is particularly useful. Constant -5.655%** (1.031)
+ Pseudo-R? is a bit better: Observations 199
Log Likelihood -50.830
compares the LL of the model  pgie 1nf. crit. 109.660
with the LL of a model = =
Note: *p<0.1; **p<0.05; ***p<0.01

without independent
variables.

>
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Goodness of fit

Simplest option:

5 LLy,
McFadden’s Pseudo-R~: 1
LLg
LLy—p—1
Adj. McFadden'’s Pseudo-R*: 1 MLLp
0

Where p is the number of independent variables.
A number of other pseudo-R* (Cox&Snell, Nagelkerke, Tjur).

Any of these goodness-of-fit statistics may be useful for
model comparison, but not worth losing your sleep over.
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Summing Up

Use logistic regression when you have a binary

outcome variable, as

you want to restrict predictions

to 0-1 interval (i.e. to predict probabilities).

Direction and significance of log-odds coetficients are

easily interpretable; effect size is not.

Average Marginal Effect is the best way to express
how change in X affects the probability that Yis 1.

Use predicted probal

oilities and AMESs to get a sense

of the substantive re.

ationships between variables.
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What Next?

Going even further beyond OLS:
* Other non-linear models (multinomial, Poisson — extensions of logistic regression).
* ML approaches (Lasso, Ridge, Decision Trees).
Specific ways of applying our workhorse models:
* Time series (panel data, survival analysis).
* Design-based approaches (matching, IV, RDDs).
* HExperiments.
Stats for goals other than inference:
* Measurement, classification, description of complex systems.

Method options are sprawling and changing fast (Al is coming for all of us) — make
your methods training fit your research needs, not the other way around.
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What Next?

Hilary Term 2024:

* Causal Inference — for a taste, see Imbens (forthcoming) “Causal Inference in the
Social Sciences”, Annual Review of Statistics and Its Application.

* Computational Methods (with Rachel!)
Oxford Spring School 2024 (applications now open):
* Machine Learning
* Causal Inference (design-based, field experiments)
* Text Analysis
Trinity Term 4-week courses.

Can’t get enough of it? Audit Intermediate Stats next year. Keep an eye out for method
courses (ECPR, ICPSR, SICSS, EITM...)

Long-term investment will involve some self-learning.
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