

BAK3: Introduction to Quantitative Methods

Week 4: Univariate Descriptive Statistics I

Leonardo Carella

The Plan for today

- ▶ Statistics:
 - ▶ Descriptive Statistics: Measures of Central Tendency (mode, mean and median).
- ▶ Coding in R:
 - ▶ Data Visualisation with ‘ggplot’: bar-plots and histograms.

Week 1: Statistics

- ▶ **Description:** summarising large quantities of information (the data) into smaller, more manageable pieces of information (an average, a graph, a table, a correlation etc.)
- ▶ **Inference:** making predictions, using what we know about the data to *infer* what's likely to be 'true' more generally. Involves dealing with uncertainty.

Week 3: Measurement

	Scale Level	Meaningful order?	Meaningful distance?	Meaningful zero point?	
Categorical	Nominal	-	-	-	Discrete
	Ordinal	✓	-	-	
Numerical	Interval	✓	✓	-	Discrete or Continuous
	Ratio	✓	✓	✓	

Describing Variables

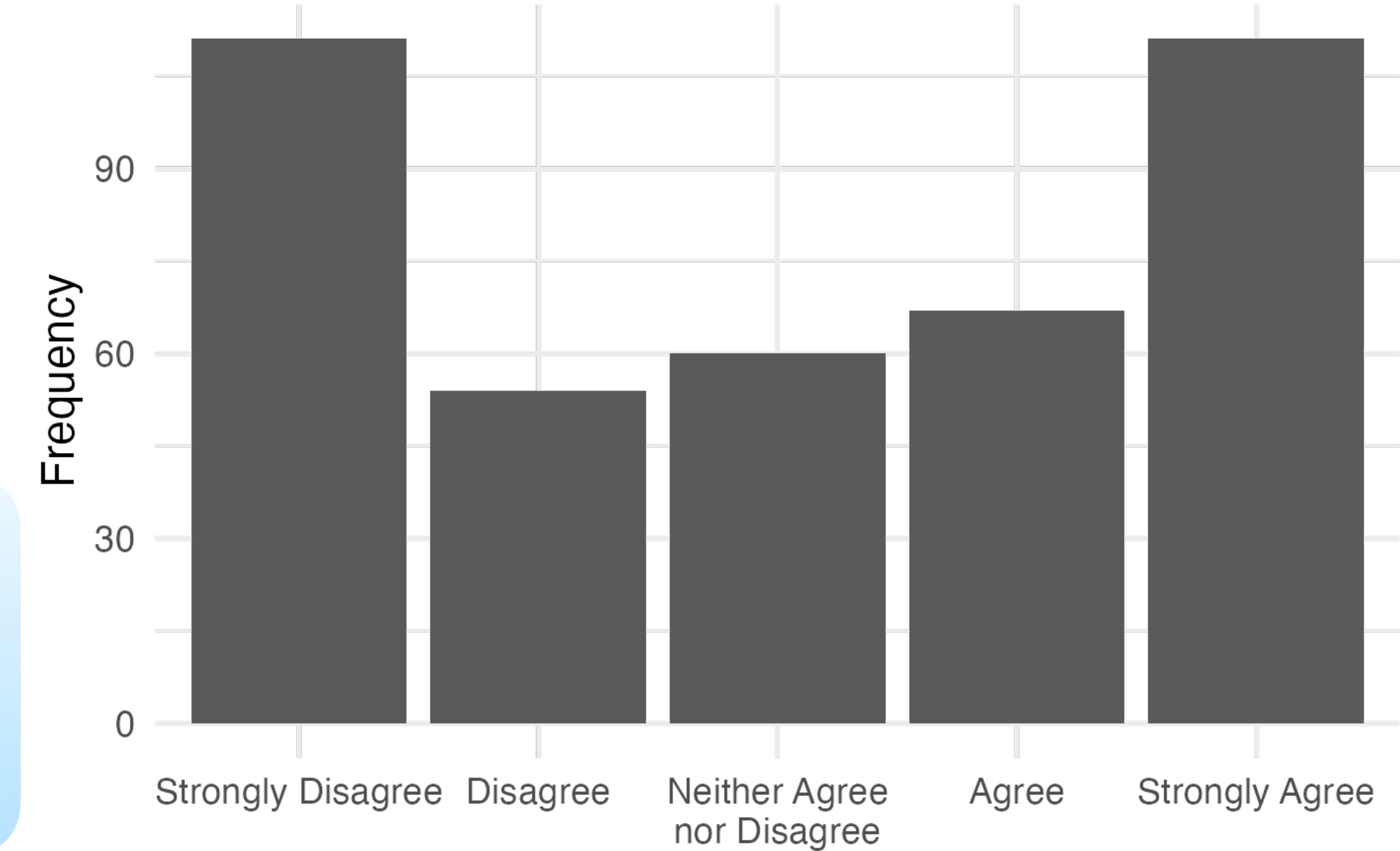
- ▶ **Descriptive Statistics:** values that tell us something important about a variable.
- ▶ Measures of central tendency: ‘typical’ value of a variable.
- ▶ **Data Visualisation:** graphical representation of the variable’s distribution (in today’s case) via size, shape, length, color etc.

The Mode

- ▶ **Most Frequent value of a variable.**
- ▶ Useful for **nominal** and **ordinal** variables.
 - ▶ The mode for the “party voted” variable is “FPÖ”.
 - ▶ The modal response is “Disagree”.
- ▶ Makes sense with **discrete** numerical variables.
 - ▶ The modal number of siblings is 2.
- ▶ Rarely useful with highly **continuous** numerical variables.

The Mode

- ▶ A variable can have more than one mode. In this case, it is known as 'bimodal' (or multimodal).
- ▶ Bar plot: plot showing the distribution of frequencies of values in each category



The Median (\tilde{x})

- ▶ The median is the observation that falls in the middle of an **ordered** variable.
- ▶ When the number of observations is odd, a single observation occurs in the middle — the value of that observation is the median.
- ▶ When the number of observations is even, two middle observations occur, and the median is the midpoint between the two.
- ▶ Age of students: {18, 19, 19, 20, 21, 21, 22, 22, 23}
- ▶ Party share of the vote: {2.5%, 7.5%, 8.4%, 10.2%, 22.0%, 49.4%}

$$(8.4\% + 10.2\%) / 2 = 9.3\%$$

The Median (\tilde{x})

- ▶ Formally, given a variable x of length n , ordered in ascending order so that $x_1 \leq x_2 \leq x_3 \leq \dots x_n$, the median \tilde{x} is...
- ▶ $\tilde{x} = x_{\frac{n+1}{2}}$ if n is odd.
- ▶ $\tilde{x} = \frac{x_{\frac{n}{2}} + x_{\frac{n+1}{2}}}{2}$ if n is even.

The Median (\tilde{x})

- ▶ Properties of the median:
 - ▶ 50% of the variable's values fall above (below) the median.
 - ▶ As a result, the sum of the **absolute deviations** between each value and the median cannot be larger than the sum of the **absolute deviations** between each value and any other number.
- ▶ if $x = \{3, 17, 11, 28, 12\}$, then $\tilde{x} = 12$, then
- ▶ $|3 - y| + |17 - y| + |11 - y| + |28 - y| + |12 - y|$ is **smallest** when $y = \tilde{x} = 12$.

The Median (\tilde{x})

- ▶ Uses of the median:
- ▶ Ordinal variables, **but not nominal variables.**
 - ▶ The median of {Strongly Disagree, Strongly Disagree, Strongly Disagree, Disagree, Disagree, Neither Agree nor Disagree, Agree, Strongly Agree, Strongly Agree} is “Disagree”.
- ▶ All numerical variables.

The Mean (\bar{x})

- ▶ The mean is **the sum of the observations divided by the number of observations**. It is also called the average or the expected value.
- ▶ E.g. height of patients: {1.78, 1.65, 1.77, 1.95, 1.57, 1.64}

$$▶ \bar{x} = \frac{1.78 + 1.65 + 1.77 + 1.95 + 1.57 + 1.64}{6} = \frac{10.36}{6} \approx 1.73$$

The Mean (\bar{x})

- ▶ Formally, for a variable x of length n , $\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$
- ▶ Or, even fancier:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$
- ▶ Where the summation symbol \sum tells us that we need to add all the values of x from x_1 to x_n . Then, we divide by n .

The Mean (\bar{x})

- ▶ Properties of the mean:
 - ▶ “**zero-sum property**”: the sum of the differences between every value and the mean is 0.
 - ▶ if $x = \{3, 17, 11, 28, 12\}$, then $\bar{x} = 14.2$, then
 - ▶ $(3 - 14.2) + (17 - 14.2) + (11 - 14.2) + (28 - 14.2) + (12 - 14.2) = 0$

The Mean (\bar{x})

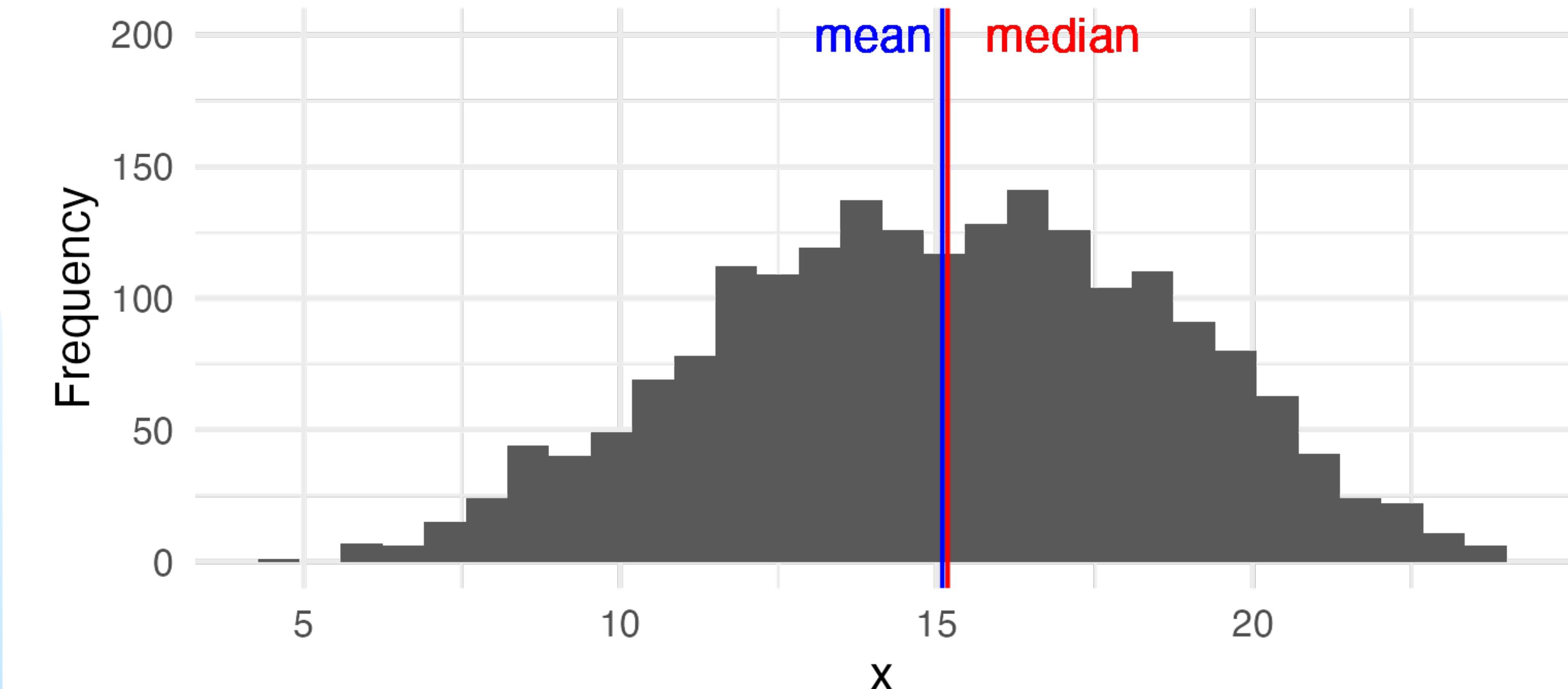
- ▶ Properties of the mean:
 - ▶ “**least-squares property**”: the sum of the **squared differences** between each value and the mean is smaller than the sum of the **squared differences** between each value and any other number.
 - ▶ if $x = \{3, 17, 11, 28, 12\}$, then $\bar{x} = 14.2$, then
 - ▶ $(3 - y)^2 + (17 - y)^2 + (11 - y)^2 + (28 - y)^2 + (12 - y)^2$ is **smallest** when $y = \bar{x} = 14.2$.

The Mean (\bar{x})

- ▶ Uses of the mean:
- ▶ Numerical variables, *but not nominal or ordinal variables*.
- ▶ One exception: binary variables, **where the mean represents the proportion of 1s in the variable**.
- ▶ If $x = \{0, 0, 1, 1, 0\}$, then $\bar{x} = 2/5 = 0.4 = 40\%$.

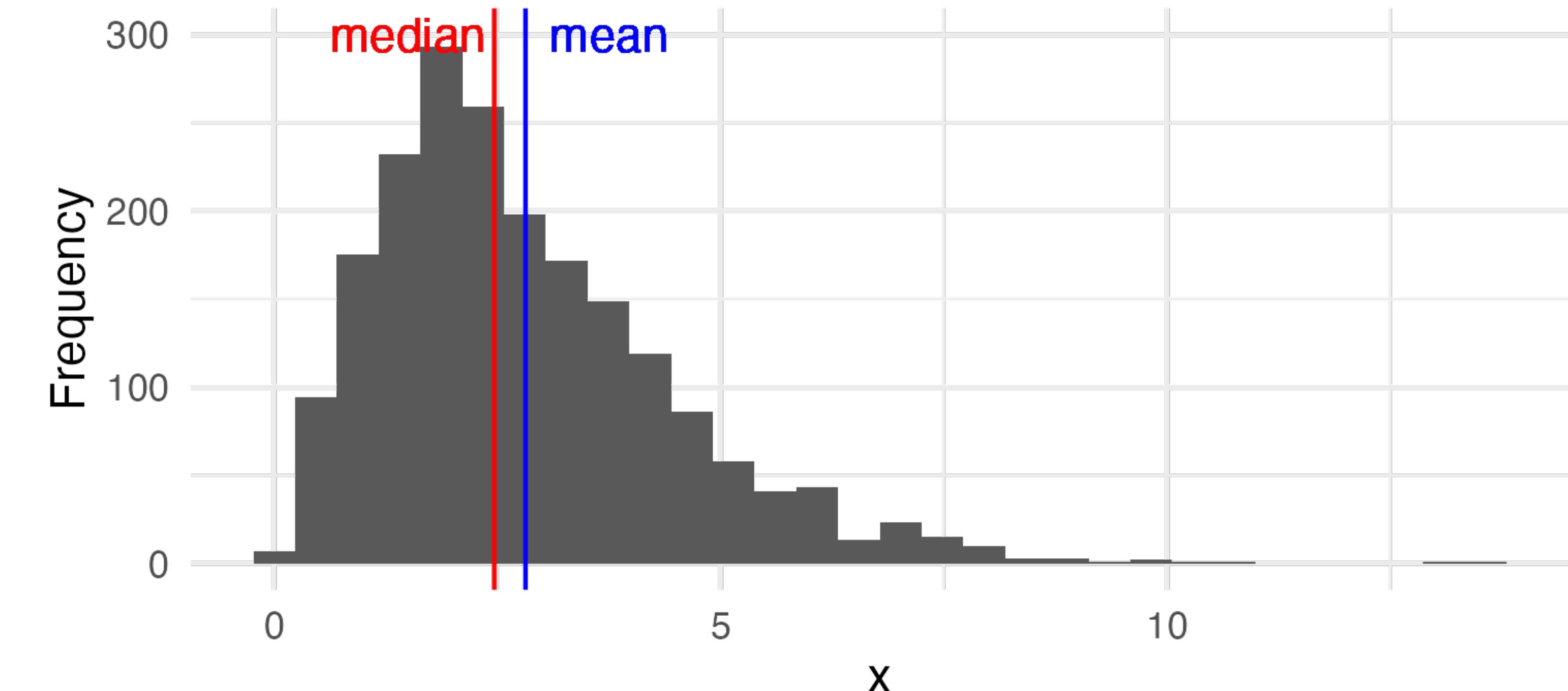
Mean and Median Compared

- ▶ When the data are symmetrically distributed, the mean and the median tend to be similar...
- ▶ Histogram: plot showing the distribution of frequencies of values within intervals ('bins')



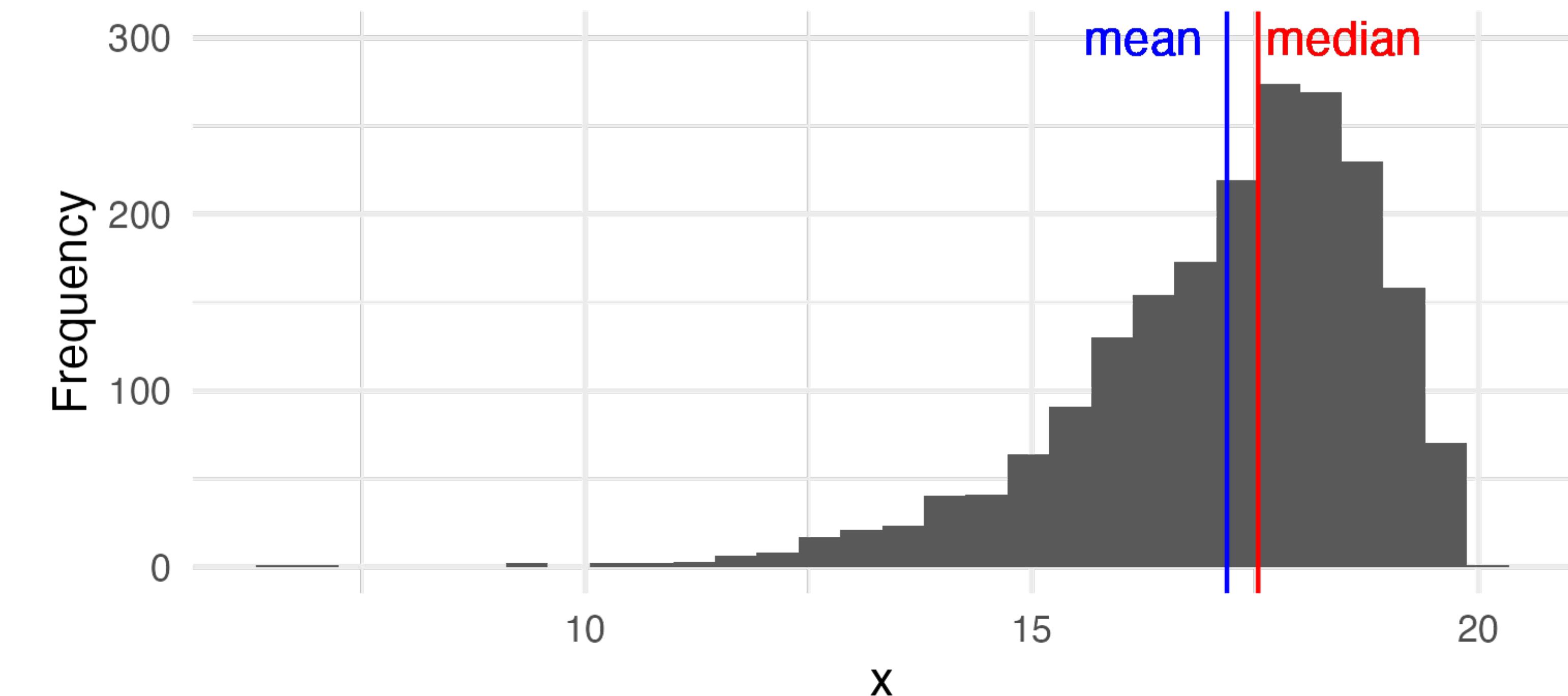
Mean and Median Compared

- ▶ When the data are **skewed**, the mean is pulled in the direction of the longer tail.
- ▶ Histogram: plot showing the distribution of frequencies of values within intervals ('bins')



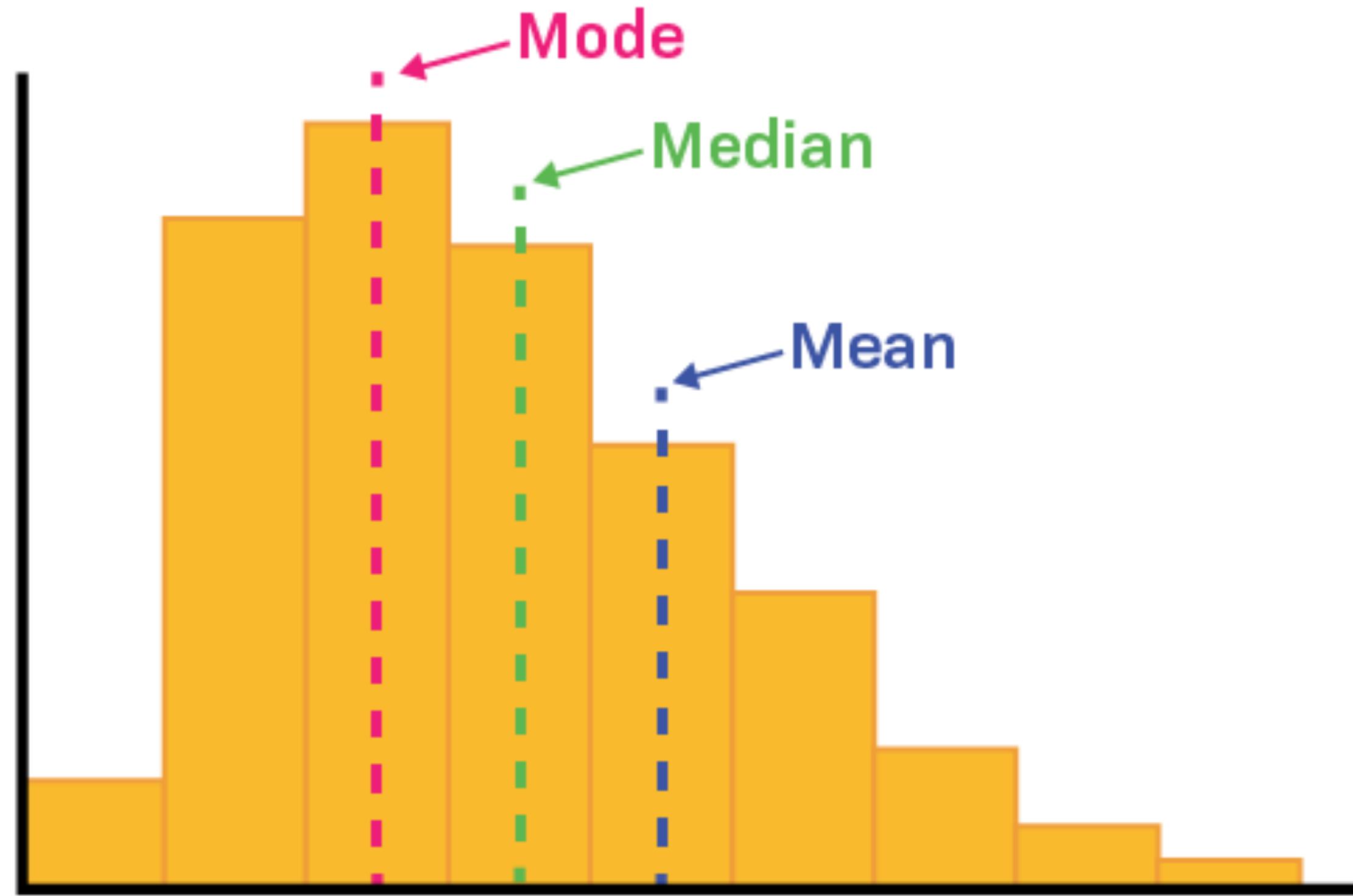
Mean and Median Compared

- ▶ When the data are **skewed**, the mean is pulled in the direction of the longer tail.
- ▶ Histogram: plot showing the distribution of frequencies of values within intervals ('bins')



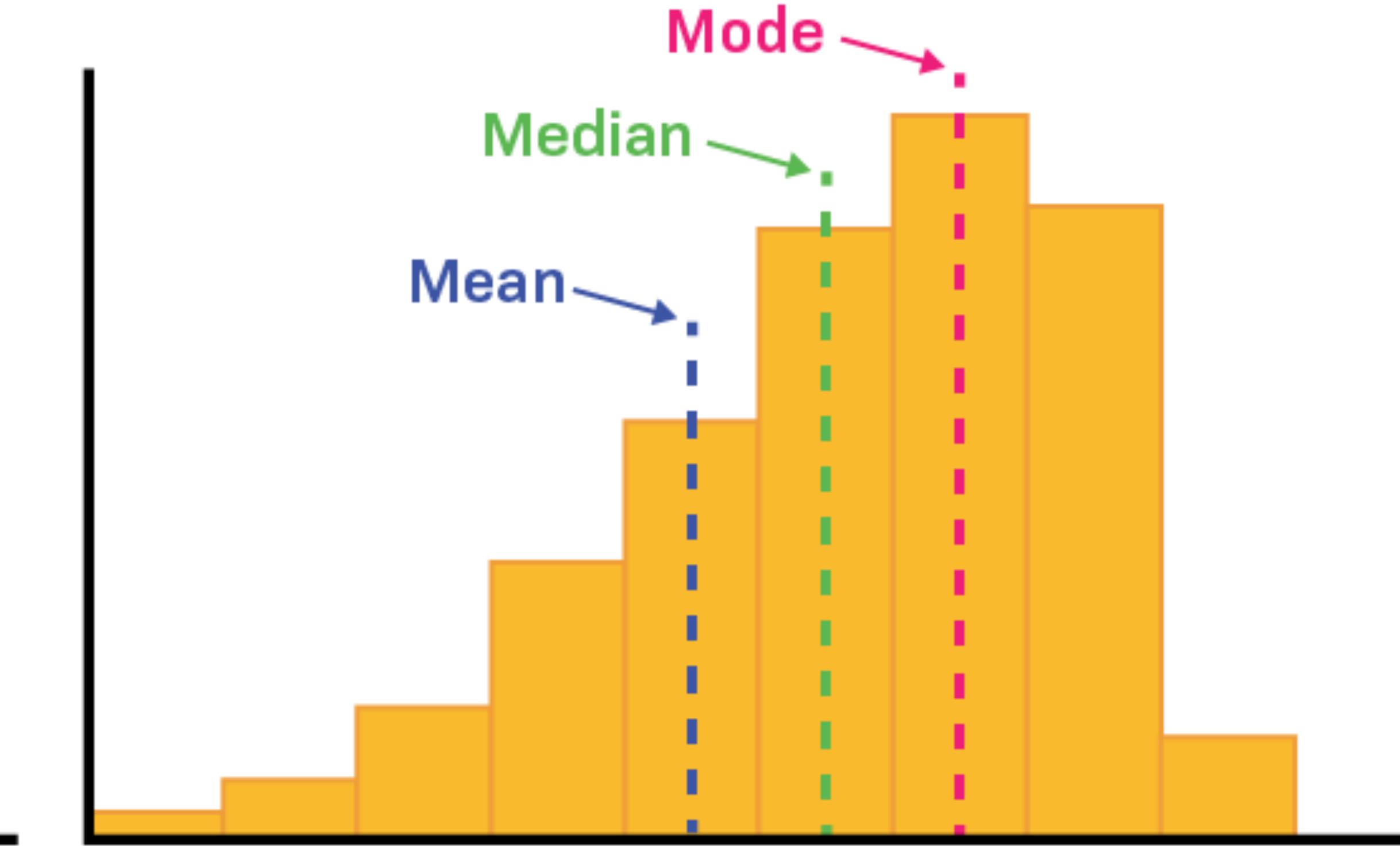
Mean and Median Compared

B. Right-skewed (or Positive-skewed)



► E.g. income

C. Left-skewed (or Negative-skewed)



► E.g. age of retirement

Mean and Median Compared

- ▶ As a result, the median can be more representative of a ‘typical’ value of a variable in presence of **outliers**.
- ▶ x (wage) = {1800€, 2300€, 3200€, 3900€, 5500€, 7000€, 500000€}

$$\bar{x} = 74814.29\text{€}$$

$$\tilde{x} = 3900\text{€}$$

And now, let's open RStudio...

