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The Plan for today

‣ Statistics: Measuring association between two variables:


‣ Easy: cross-tabulations, mean comparisons.


‣ Hard(er): covariance and the correlation coefficient.


‣ Coding in R:


‣ All this stuff, plus scatter plots.



Review Quiz
‣ What does this formula compute for the variable  of length  ? 





‣ What would be the formula for the variance?


‣ Let’s compute together the standard deviation of this variable: 


 = {-4,  0,  2,  2,  4,  8}

x n

1
n − 1

n

∑
i=1

(xi − x̄)2

x



Cross-Tabulations
‣ Imagine you had a hypothesis about the association between two 

categorical (i.e. nominal or strictly ordinal) variables.


‣ For instance: 


‣ Presidential systems are more likely to experience coups.


‣ Black applicants are less likely to be offered a job interview. 


‣ Men are more likely than women to participate in demonstrations.


‣ What are the independent variables in these hypotheses? What are 
the dependent variables? 



Cross-Tabulations
‣ Because the values in these variables have no mathematical meaning, 

there’s not much fancy math we can do with them. 


‣ Just to count the frequency of the possible outcomes on the 
dependent variable across each category of the independent variable.


‣ This will return a table (known as cross-tabulation, cross-tab or 
contingency table) with as many rows as there are possible values 
for the independent variable and as many columns as there are 
possible values for the dependent variable.  



Cross-Tabulations
Government 
System Experienced Coup Did Not Experience 

Coup

Parliamentary 8 42

Semi-Presidential 6 24

Presidential 18 22

‣ Note: I made up these numbers.



Cross-Tabulations
Government 
System Experienced Coup Did Not Experience 

Coup

Parliamentary 16% 84%

Semi-Presidential 20% 80%

Presidential 45% 55%

Conditional Proportions: rows add up to 100%.

‣ Note: I made up these numbers.



Means Comparison
‣ Imagine now you had a hypothesis about the association between a 

categorical independent variable and a numerical dependent variable.


‣ For instance: 


‣ Proportional electoral systems lead to a higher share of women in 
parliament relative to mixed-member or majoritarian systems.


‣ Incumbents receive more votes than non-incumbent candidates. 


‣ Unemployed people support higher levels of welfare spending. 



Means Comparison

‣ We’ve already seen in the R sessions and in the assignments what 
we do in these cases. 


‣ We compute the mean (or, less commonly, some other 
representative descriptive statistic) separately for observations in 
each group. 



Means Comparison

Electoral system Number of  
countries (N)

Mean % women in 
parliament Minimum Maximum

Majoritarian 22 18.5% 5% 33%

Mixed 17 24.1% 8% 39%

Proportional 21 34.2% 17% 49%

Total 60 25.9% 5% 49%

‣ Note: I made up these numbers.



Two Numerical Variables

‣ When you have a hypothesis linking two numerical variables, it’s often 
useful to start with a visualisation: the scatter plot. 


‣ The scatter plot shows observations as points in a space, with 
coordinates ( ), where  is the value of the independent variable 
for observation , and  is the value of the dependent variable. 


‣ It’s a convention (and not clear-cut in all cases), but remember to put 
the ‘cause’ variable on the  axis, and the ‘effect’ on the  axis.
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Some Scatter Plots
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Covariance

‣ One way of quantifying direction (and strength) of associations is the 
covariance. The covariance of  and  is given by…





‣ Can take any value. If positive, the association is positive. If negative, 
the association is negative. 

X Y

Cov(X, Y) =
∑n

i=1 (xi − x̄) (yi − ȳ)
n − 1



Covariance
‣ Why does this work? Imagine having only two people in your data: A 

weights 60kg and is 165cm; B weights 80kg and is 175cm. 


‣ The mean weight is 70, the mean height is 170.  







‣ Weight and height are positively associated (groundbreaking!). 

Cov(W, H) = (wA − 70) (HA − 170) + (wB − 70) (HB − 170)
n − 1

Cov(W, H) =
(−10)(−5) + (10)(5)

2 − 1
= 50 + 50 = 100



Covariance
‣ Another basic example: person A works 10 hours a day, and has 2 hours of 

leisure time. Person B works 4 hours a day, and has 6 hours of leisure time.


‣ The mean work-time is 7, the mean leisure-time is 4.  







‣ Work-time and leisure-time are negatively associated. 

Cov(W, L) = (wA − 7) (lA − 4) + (wB − 7) (lB − 4)
n − 1

Cov(W, L) =
(3)(−2) + (−3)(2)

2 − 1
= − 6 + (−6) = − 12



Covariance
‣ Order doesn’t matter. . 


‣ The covariance is a close relative of the variance. In fact, 
. 


‣ Unlike the variance, it can take positive or negative values. 
The sign refers to the direction of the association. 


‣ Like the variance, it’s hard to interpret in terms of ‘size’. But 
it’s the stepping stone to better measures of association (today: 
the correlation coefficient, week 11: the regression coefficient). 

Cov(X, Y) = Cov(Y, X)

Cov(X, X) = Var(X)



Correlation Coefficient
‣ A more widely used measure of correlation is the Pearson correlation 

coefficient (a.k.a. Pearson’s r or Pearson product-moment correlation 
coefficient, or just the correlation coefficient. 


‣ It’s the covariance of  and  divided by the product of the standard 
deviation of  and the standard deviation of : 





‣ It’s a unit-less quantity. If you measure time in hours, minutes or seconds, if 
you measure weight in kgs, pounds or grams, it will still be the same. 

X Y
X Y

rX,Y =
Cov(X, Y)

sXsY



Correlation Coefficient
‣ Properties of Pearson’s r:


‣ It is always comprised between -1 and 1, where -1 is a perfect negative 
correlation, 1 is a perfect positive correlation an 0 is no correlation. 


‣ So we can interpret both direction (positive or negative) and size of the 
association (0.7 is larger than 0.2, whatever the units of your variables).


‣ BUT:


‣ It only tells us about linear associations. Use scatter plots to detect if there are 
non-linear patterns in your data. 


‣ As usual, correlation  causation, no matter how ‘big’ the coefficient. ≠



Examples
r = − 0.77

r = 0.91

r = 0.57

r = − 0.36



Summing Up…

‣ When you have two categorical variables, show the association 
via a cross-tabulation. 


‣ When you have one categorical variable and one numerical 
variable, show the association via a means comparison. 


‣ When you have two numerical variables, measure the association 
with the correlation coefficient (show it with a scatter plot). 


‣  And now, let’s open RStudio…


